Advertisement

Applied Physics A

, 125:59 | Cite as

TiO2–SrTiO3 composite photoanode: effect of strontium precursor concentration on the performance of dye-sensitized solar cells

  • M. Y. A. RahmanEmail author
  • S. A. M. SamsuriEmail author
  • A. A. Umar
Article
  • 38 Downloads

Abstract

We report herein a detailed study on the influence of Sr precursor (strontium chloride hexahydrate) concentration on the properties of TiO2–SrTiO3 composite film and dye-sensitized solar cells (DSSCs) performance. TiO2–SrTiO3 composite film has successfully been fabricated by two steps of LPD-hydrothermal method for which the prepared TiO2 acted as a Ti source for SrTiO3. Besides anatase, SrTiO3 phase with cubic structure is detected from the XRD spectra confirming the formation of TiO2–SrTiO3 film composite. The detection of the peak of Sr element from EDX and Raman shift at the peak of 436 cm− 1, 554 cm− 1 and 799 cm− 1 further confirms the existence of the SrTiO3 coated on TiO2. TiO2–SrTiO3 composite film with Sr precursor optimum concentration 0.1 M depicts the highest performance of the DSSC with the η = 1.71 ± 0.21%, Voc = 0.58 ± 0.22 V and Jsc = 9.1 ± 2.1 mA/cm2 due to superior lights scattering and highest dye loading. Facile charge transfer was observed by increasing the Sr content due to inhibition of recombination process. Combining TiO2 with SrTiO3 in composite form at the optimum Sr precursor concentration is found as an effective way of enhancing the efficiency of the device.

Notes

Acknowledgements

The authors would like to acknowledge Universiti Kebangsaan Malaysia (UKM) for providing a financial support through a research grant GUP-2016-013 and GP-K020131 to carry out this work. The authors also want to thank Centre for Research and Innovation Management (CRIM) UKM for the FESEM, EDX, Raman and XRD facilities.

References

  1. 1.
    S.C. Choi, H.S. Lee, S.J. Oh, S.H. Sohn, Phys. Scr. 85, 25801 (2012)CrossRefGoogle Scholar
  2. 2.
    F. Al-juaid, A. Merazga, Energy Power Eng. 5, 591–595 (2013)CrossRefGoogle Scholar
  3. 3.
    C. Chou, F. Chou, J. Kang, Powder Technol. 215216 (2012) 38–45CrossRefGoogle Scholar
  4. 4.
    G.K.L. Goh, H.Q. Le, T.J. Huang, B.T.T. Hui, J. Solid State Chem. 214, 17–23 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Diamant, S.G. Chen, O. Melamed, A. Zaban, J. Phys. Chem. B 107, 1977–1981 (2003)CrossRefGoogle Scholar
  6. 6.
    I.A. Ji, M. Park, J. Jung, M.J. Choi, Y. Lee, J. Lee, J.H. Bang, Bull. Korean Chem. Soc. 33, 2200–2206 (2012)CrossRefGoogle Scholar
  7. 7.
    K.T. Dembele, G.S. Selopal, C. Soldano, R. Nechache, A. Vomiero, J. Phys. Chem. C. 117, 14510–14517 (2013)CrossRefGoogle Scholar
  8. 8.
    U. Mehmood, I.A. Hussein, K. Harrabi, M.B. Mekki, S. Ahmed, N. Tabet, Sol. Energy Mater. Sol. Cells 140, 174–179 (2015)CrossRefGoogle Scholar
  9. 9.
    J. Huo, Y. Hu, H. Jiang, W. Huang, C. Li, J. Mater. Chem. A 2, 8266–8272 (2014)CrossRefGoogle Scholar
  10. 10.
    D. Maheswari, P. Venkatachalam, Fundam. Appl. 12, 515–526 (2014)Google Scholar
  11. 11.
    P. Cheng, Y. Wang, L. Xu, P. Sun, Z. Su, F. Jin, F. Liu, Y. Sun, G. Lu, RSC Adv. 6, 51320–51326 (2016)CrossRefGoogle Scholar
  12. 12.
    J. Hojo, H. Tong, S. Shintani, M. Inada, Y. Tanaka, J. Jpn. Soc. Powder Powder Metall. 59, 621–625 (2012)CrossRefGoogle Scholar
  13. 13.
    X. Chen, S.S. Mao, Chem. Rev. 107, 2891–2959 (2007)CrossRefGoogle Scholar
  14. 14.
    M. Dahl, Y. Liu, Y. Yin, Chem. Rev. 114, 9853–9890 (2014)CrossRefGoogle Scholar
  15. 15.
    V.M. Mohan, M. Shimomura, K. Murakami, J. Nanosci. Nanotechnol. 12, 433–438 (2012)CrossRefGoogle Scholar
  16. 16.
    U.V. Desai, C. Xu, J. Wu, D. Gao, J. Phys. Chem. C 117, 3232–3239 (2013)CrossRefGoogle Scholar
  17. 17.
    S.A.M. Samsuri, M.Y.A. Rahman, A.A. Umar, M.M. Salleh, Mater. Lett. 160, 388–391 (2015)CrossRefGoogle Scholar
  18. 18.
    S.A.M. Samsuri, M.Y.A. Rahman, A.A. Umar, M.M. Salleh, J. Alloys Compd. 623, 460–465 (2015)CrossRefGoogle Scholar
  19. 19.
    Y. Li, Q. Sun, S. Ma, M. Zhang, Q. Liu, L. Dong, ECS J. Solid State Sci. Technol. 4, Q17–Q20 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    S. Yang, H. Kou, J. Wang, H. Xue, H. Han, J. Phys. Chem. C 114, 4245–4249 (2010)CrossRefGoogle Scholar
  21. 21.
    M. Hod, Z. Shalom, S. Tachan, A. Rühle, Zaban, J. Phys. Chem. C 114, 10015–10018 (2010)CrossRefGoogle Scholar
  22. 22.
    E. Guo. L. Yin, J. Mater. Chem. A 3, 13390–13401 (2015)CrossRefGoogle Scholar
  23. 23.
    S. Wu, X. Gao, M. Qin, J.M. Liu, S. Hu, Appl. Phys. Lett. 99, 4–7 (2011)Google Scholar
  24. 24.
    M. Wang, Y. Wang, J. Li, Chem. Commun. 47, 11246–11248 (2011)CrossRefGoogle Scholar
  25. 25.
    J. Zhang, J.H. Bang, C. Tang, P.V. Kamat, ACS Nano 4, 387–395 (2010)CrossRefGoogle Scholar
  26. 26.
    S. Ali Umar, S.K. Nafisah, S. Md Saad, A. Tee Tan, M.M. Balouch, M. Salleh, Oyama, Sol. Energy Mater. Sol. Cells 122, 174–182 (2014)CrossRefGoogle Scholar
  27. 27.
    D. Dastan, Appl. Phys. A 123, 699, 1–13 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    D. Dastan, N. Chaure, M. Kartha, J. Mater. Sci. Mater. Electron. 28, 7784–7796 (2017)CrossRefGoogle Scholar
  29. 29.
    D. Dastan, S.L. Panahi, N.B. Chaure, J. Mater. Sci. Mater. Electron. 27, 12291–12296 (2016)CrossRefGoogle Scholar
  30. 30.
    D. Dastan, N.B. Chaure, J. Mater. Mech. Manufact. 2, 21–24 (2014)Google Scholar
  31. 31.
    D. Dastan, P.U. Londhe, N.B. Chaure, J. Mater. Sci. Mater. Electron. 25, 3473- (2014)CrossRefGoogle Scholar
  32. 32.
    S.A.M. Samsuri, M.Y.A. Rahman, A.A. Umar, M.M. Salleh, Ionics 23, 3533–3544 (2017)CrossRefGoogle Scholar
  33. 33.
    T. Hoseinzadeh, Z. Ghorannevis, M. Ghoranneviss, Appl. Phys 123, 436 (2017)CrossRefGoogle Scholar
  34. 34.
    P. Jayabal, V. Sasirekha, J. Mayandi, K. Jeganathan, V. Ramakrishnan, J. Alloys Compd. 586, 456–461 (2014)CrossRefGoogle Scholar
  35. 35.
    M. Pal, U. Pal, J.M.G.Y. Jiménez, F. Pérez-Rodríguez, Nanoscale Res. Lett. 7, 1–12 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    D.P. Rai, A. Sandeep, A.P. Shankar, T.P. Sakhya, B. Sinha, M.M. Merabet, R. Saad, A. Khenata, S. Boochani, R.K. Solayman, Thapa, Mat. Chem. Phys. 186, 620–626 (2018)CrossRefGoogle Scholar
  37. 37.
    S.L. Panahi, D. Dastan, N.B. Chaure, Adv. Sci. Lett. 22, 941–944 (2016)CrossRefGoogle Scholar
  38. 38.
    D. Dastan, S.L. Panahi, A.P. Yengntiwar, Adv. Sci. Lett. 22, 950–953 (2016)CrossRefGoogle Scholar
  39. 39.
    D. Dastan, J. Atomic, Mol. Condensate Nano Phys. 2, 109–114 (2015)Google Scholar
  40. 40.
    D. Dastan, A. Banpurkar, J. Mater. Sci. Mater. Electron. 28, 3851–3859 (2016)CrossRefGoogle Scholar
  41. 41.
    D. Dastan, S.W. Gosavi, N.B. Chaure, Macromol. Symp. 347, 81–86 (2015)CrossRefGoogle Scholar
  42. 42.
    S. Hao, Y. Shang, D. Li, H. Ågren, C. Yang, G. Chen, Nanoscale 9, 6711–6715 (2017)CrossRefGoogle Scholar
  43. 43.
    Y. Shang, S. Hao, C. Yang, G. Chen, Nanomater. 5 (2015) 1782–1809CrossRefGoogle Scholar
  44. 44.
    K. Park, Q. Zhang, B.B. Garcia, G. Cao, J. Phys. Chem. C 115, 4927–4934 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan MalaysiaBangiMalaysia
  2. 2.Nano-Optoelectronics Research and Technology Laboratory, School of PhysicsUniversiti Sains MalaysiaGelugorMalaysia

Personalised recommendations