Advertisement

Applied Physics A

, 125:36 | Cite as

Investigation of structural, optical and morphological properties of InGaN/GaN structure

  • A. Kürşat BilgiliEmail author
  • Ömer Akpınar
  • M. Kemal Öztürk
  • Ceren Başköse
  • Süleyman Özçelik
  • Ekmel Özbay
Article
  • 123 Downloads

Abstract

In this study, InGaN/GaN structure is investigated in the temperature range of 300–500 °C with steps of 50 °C. InGaN/GaN multi-quantum well structure is deposited on c-orientated sapphire wafer by metal organic chemical vapour deposition method. All the parameters except for temperature kept constant during growth period. InGaN/GaN structures with different In content are investigated by XRD technique. Their structural, optical and morphological characteristics are determined by high resolution X-ray diffraction, Fourier transform spectroscopy (FTIR), photo luminescence (PL), transmission and atomic force microscopy (AFM). According to FTIR and PL spectra’s, it is noticed that band gap values coincide with blue region in the electromagnetic spectrum. As a result of transmission measurements it is seen that light is completely absorbed by the sample at approximately 390 nm. Using XRD technique, dislocation densities and strain are calculated. Full width at half maximum of the XRD peak values gained from X-ray diffraction are used in an alternative method called Williamson–Hall (W–H). Using W–H method, lateral and vertical crystal lengths and tilt angles are determined. Surface roughness parameters are investigated by AFM. Different properties of GaN and InGaN layers are compared as dependent on increasing temperature. According to AFM images it is seen that these structures have high surface roughness and large crystal size. All the results yielded from the mentioned methods are in good agreement with the previous works done by different authors.

References

  1. 1.
    H. Morkoç, Hand book of nitride semiconductors and devices, vol. 1 (Wiley, Berlin, 2008), p. 16Google Scholar
  2. 2.
    S. Çörekçi (2008). Morphological characteristics of III-V group compound semiconductors Doctora Thesis, Gazi University, Ankara, 10(11), p. 39Google Scholar
  3. 3.
    S.T. Bayrak (2011). InGaN/GaN Multi quantum well light emitting diodes. Doctora thesis Balıkesir University Science institude, Balıkesir, p. 7–11Google Scholar
  4. 4.
    S. Nakamura, The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes. Science 281(5379), 956–961 (1998)CrossRefGoogle Scholar
  5. 5.
    S. Nakamura, I. Akasaki, H. Amano, Blue, LEDs, Filling the world with new light (The royal Swedish academy of sciences, Stockholm)Google Scholar
  6. 6.
    D.M. Graham, A. Soltani-Vala, P. Dawson, M.J. Godfrey, T.M. Smeeton, J.S. Barnard, M.J. Kappers, C.J. Humphreys, E.J. Thrush, J. Appl. Phys. 97, 103508 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    F.A. Ponce, B.S. Krusor, J.S.M. Jr, W.E. Plano, J. Welch, Microstructure of GaN epitaxy on SiC using AlN buffer layers. Appl. Phys. Lett. 67(3), 410–412 (1995)ADSCrossRefGoogle Scholar
  8. 8.
    S. Chichibu, T. Azuhata, T. Sota, S. Nakamura, Spontaneous emission of localized excitons in InGaN single and multiquantum well structures. Appl. Phys. Lett. 69(27), 4188–4190 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    S.D. Lester, F.A. Ponce, M.G. Crawford, D.A. Steigerwald, High dislocation densities in high-efficiency Gan-based light-emitting-diodes. Appl. Phys. Lett. 66(10), 1249–1251 (1995)ADSCrossRefGoogle Scholar
  10. 10.
    M.K. Öztürk, H. Yu, B. Sarıkavak, S. Korçak, S. Özçelik, E. Özbay, Structural analysis of an InGaN/GaN based light emitting diode by X-ray diffraction. J. Mater. Sci. 21(2), 185–191 (2010)Google Scholar
  11. 11.
    M.K. Öztürk, S. Çörekçi, M. Tamer, S. Çetin, S. Özçelik, E. Özbay, Microstructural properties of InGaN/GaN light-emitting diode structures with different In content grown by MOCVD. Appl. Phys. A Mater. Sci. Process. 114(4), 1215–1221 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    V.S. Harutyunyan, A.P. Aivazyan, E.R. Weber, Y. Kim, Y. Park, S.G. Subramanya, High resolution X-ray diffraction strain-stress analysis of GaN/Sapphire heterostructures. J. Phys. D Appl. Phys. 34(10A), A35–A39 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    M.A.G. Halliwell, X-ray diffraction solutions to heteroepitaxial growth problems. J. Cryst. Growth 170(1–4), 47–54 (1997)ADSCrossRefGoogle Scholar
  14. 14.
    T. Metzger, R. Höpler, E. Born, O. Ambacher, M. Stutzmann, R. Stömmer, M. Schuster, H. Gobe, S. Christiansen, M. Albrecht, H.P. Strun, Defect structure of epitaxial GaN films determined by transmission electron microscopy and triple-axis X-ray diffractometry. Philos. Mag A 77(4), 1013–1025 (1998)ADSCrossRefGoogle Scholar
  15. 15.
    M.K. Öztürk, H. Altuntaş, S. Çörekçi, Y. Hongbo, S. Özçelik, E. Özbay, Strain–stress analysis of AlGaN/GaN heterostructures with and without an AlN suffer and interlayer. Strain 47(s2), 19–27 (2011)CrossRefGoogle Scholar
  16. 16.
    M.K. Öztürk, E. Arslan, İ Kars, S. Özçelik, E. Özbay, Strain analysis of the GaN epitaxial layers grown on nitridated Si(111) substrate by metal organic chemical vapor deposition. Mater. Sci. Semiconduct. Process. 16(1), 83–88 (2013)CrossRefGoogle Scholar
  17. 17.
    G.K. Williamson, W.H. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1(1), 22–31 (1953)CrossRefGoogle Scholar
  18. 18.
    E. Arslan, M.K. Öztürk, Ö Duygulu, A.A. Kaya, S. Özçelik, E. Özbay, The influence of nitridation time on the structural properties of GaN grown on Si(111) substrate. Appl. Phys. A Mater. Sci. Process. 94(1), 73–82 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    E. Arslan, M.K. Öztürk, A. Teke, S. Özçelik, E. Özbay, Buffer optimization for crack-free GaN epitaxial layers grown on Si(111) substrate by MOCVD. Jpn. J. Phys. D 41(15), 155317–155326 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    M.E. Vickers, M.J. Kappers, R. Datta, C. McAleese, T.M. Smeeton, F.D.G. Rayment, C.J. Humphreys, In-plane imperfections in GaN studied by X-ray diffraction. J. Phys. D 38(A10), A99–A104 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    X.H. Zheng, H. Chen, Z.B. Yan, Y.J. Han, H.B. Yu, D.S. Li, Q. Huang, J.M. Zhou, Determination of twist angle of in-plane mosaic spread of GaN films by high-resolution X-ray diffraction. J. Cryst. Growth 255(1–2), 63–67 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    P. Gay, P.B. Hirsch, A. Kelly, The estimation of dislocation densities in metals from X-ray data. Acta Metall. 1(3), 315–319 (1953)CrossRefGoogle Scholar
  23. 23.
    M.J. Hordon, B.L. Averbach, X-ray measurements of dislocation density in deformed copper and aluminum single crystals. Acta Metall. 9(3), 237–246 (1961)CrossRefGoogle Scholar
  24. 24.
    A. Vogt et al., Recombination dynamics in planar and three-dimensional InGaN/GaN light emitting diode structures. J. Mater. Res. 32(13), 2456–2463 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    M.A. Reshchikov, H. Morkoc, Luminescence properties of defects in GaN. J. Appl. Phys. 97(6), 135 (2005)CrossRefGoogle Scholar
  26. 26.
    J.R. Taylor, C.D. Zafiratos, M.A. Dubson (2004). Modern Physics for scientists and engineers (Colorado University, Boulder), p. 101–115Google Scholar
  27. 27.
    H. Çakmak (2012). Growth and characterisation of In rich InGaN solar cell epitaxial structures by metal organic chemical vapor deposition. Master Thesis, Middle East technical university, Turkey, 60–70Google Scholar
  28. 28.
    Y. Baş (2014). Investigation of InGaN blue LED microstructure defects from reciprocal space mapping. Doctora Thesis, Gazi University, Turkey, 60–103Google Scholar
  29. 29.
    J.F. Muth et al., Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements. Appl. Phys. Lett. 71(18), 2572–2574 (1997)ADSCrossRefGoogle Scholar
  30. 30.
    S.S. Ng et al. Surface phonon polariton of wurtzite GaN thin film grown on c-plane sapphire substrate. Solid State Commun. 145(11–12), 535–538 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    S.S. Ng et al. Surface and interface phonon polaritons of wurtzite GaN thin film grown on 6H-SiC substrate. Appl. Phys. Lett. 94(24), 241912 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    A. Erol Dilute III–IV nitride semiconductors and material systems. Phys. Technol. 2008, 105 (2008)Google Scholar
  33. 33.
    R. Darshan Sharma Jha, Analysis of structural, optical and magnetic properties of Fe/Co co-doped ZnO nanocrystals. Ceram. Int. 43, 8488–8496 (2017)CrossRefGoogle Scholar
  34. 34.
    A. Torabi et al., Surface and interface characterization of GaN/AlGaN high electron mobility transistor structures by X-ray and atomic force microscopy. J. Vac. Sci. Technol. B 20(3), 1234–1237 (2002)ADSCrossRefGoogle Scholar
  35. 35.
    F.C. Frank, The influence of dislocations on crystal growth. Discuss. Faraday Soc. 5, 48 54 (1949)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • A. Kürşat Bilgili
    • 1
    Email author
  • Ömer Akpınar
    • 2
  • M. Kemal Öztürk
    • 1
    • 2
  • Ceren Başköse
    • 2
  • Süleyman Özçelik
    • 1
    • 2
  • Ekmel Özbay
    • 3
  1. 1.Department of PhysicsGazi UniversityAnkaraTurkey
  2. 2.Photonics Research CenterGazi UniversityAnkaraTurkey
  3. 3.Nanotechnology Research CenterBilkent UniversityAnkaraTurkey

Personalised recommendations