Applied Physics A

, 125:29 | Cite as

Effects of Zr substitution on microstructure and microwave dielectric properties of Zn(Ti1−xZrx)Nb2O8 ceramics

  • Yujia Huang
  • Yueming LiEmail author
  • Zhumei Wang
  • Zhixiang Xie
  • Zongyang Shen
  • Yan Hong


Zn(Ti1−xZrx)Nb2O8(x = 0, 0.2, 0.4, 0.5, 0.6) ceramics were prepared by conventional solid-state reaction process. The effects of Zr substitution for Ti on the phase composition, microstructure, and the microwave dielectric properties of Zn(Ti1−xZrx)Nb2O8 ceramics were investigated by using X-ray diffraction and scanning electron microscopy. The phase transition from ZnTiNb2O8 to ZnZrNb2O8 occurred at x = 0.5. The grain size decreased and the distribution of grain size was more homogeneous with increasing x. While εr and τf decreased slightly, a great improvement in Q × f value was obtained by the promoted densification and the uniform grains. The best combination of microwave dielectric characteristics was obtained for the composition of x = 0.4 and sintered at 1120 °C for 6 h: dielectric constant εr was 33.43, quality factor Q × f reaches 59,475 GHz, and the temperature coefficient of the resonant frequency τf was − 76.54 × 10−6/°C.



This work is supported by the National Natural Science Foundation (no. 61671224) and Jiangxi Provincial Natural Science Foundation of China (no. 20171BAB216008).


  1. 1.
    I.M. Reaney, D. Iddles, Microwave dielectric ceramics for resonators and filters in mobile phone networks. J. Am. Ceram. Soc. 89, 2063–2072 (2006)Google Scholar
  2. 2.
    H. Ohsato, Functional advances of microwave dielectrics for next generation. Ceram. Int. 38, S141–S146 (2012)CrossRefGoogle Scholar
  3. 3.
    S. Joseph, M.K. Suresh, J.K. Thomas, A. John, S. Solomon, Synthesis, characterization and spectroscopic analysis of NdxY1–xTiNbO6 microwave ceramics. Int. J. Appl. Ceram. Technol. 7, E129–E134 (2010)CrossRefGoogle Scholar
  4. 4.
    L. Fang, H. Zhang, Q. Yu, H.P. Su, B.L. Wu, X.M. Cui, Sr3LaNb3O12: a new low loss and temperature stable A4B3O12-type microwave dielectric ceramic. J. Am. Ceram. Soc. 92, 556–558 (2009)CrossRefGoogle Scholar
  5. 5.
    D. Pamu, G.L.N. Rao, K.C.J. Raju, Enhanced microwave dielectric properties of (Zr0.8,Sn0.2)TiO4 ceramics with the addition of its own nanoparticles. J. Am. Ceram. Soc. 95, 126–132 (2012)CrossRefGoogle Scholar
  6. 6.
    P.P. Ma, X.Q. Liu, F.Q. Zhang, J.J. Xing, X.M. Chen, Sr(Ga0.5Nb0.5)1–xTixO3 low-loss microwave dielectric ceramics with medium dielectric constant. J. Am. Ceram. Soc. 98, 2534–2540 (2015)CrossRefGoogle Scholar
  7. 7.
    G.R. Ren, J.Y. Zhu, L. Li, B. Liu, X.M. Chen, SrLa(R0.5Ti0.5)O4 (R = Mg, Zn) microwave dielectric ceramics with complex K2NiF4-type layered perovskite structure. J. Am. Ceram. Soc. 00, 1–8 (2017)Google Scholar
  8. 8.
    D.W. Kim, D.Y. Kim, K.S. Hong, Phase relations and microwave dielectric properties of ZnNb2O6–TiO2. J. Mater. Res. 15, 1331–1335 (2000)CrossRefADSGoogle Scholar
  9. 9.
    Q.W. Liao, L.X. Li, Structural dependence of microwave dielectric properties of ixiolite structured ZnTiNb2O8 materials: crystal structure refinement and Raman spectra study. Dalton Trans. 41, 6963 (2012)CrossRefGoogle Scholar
  10. 10.
    Z.L. Huan, Q.C. Sun, W.B. Ma, L.J. Wang, F. Xiao, T.K. Chen, Crystal structure and microwave dielectric properties of (Zn1−xCox)TiNb2O8 ceramics. J. Alloys Compd. 551, 630–635 (2013)CrossRefGoogle Scholar
  11. 11.
    T.K. Chen, W.B. Ma, Q.C. Sun, C.C. Tang, Z.L. Huan, B.B. Niu, The microwave dielectric properties of (Ni,Zn)0.5Ti0.5NbO4 solid solution. Mater. Lett. 113, 111–113 (2013)CrossRefGoogle Scholar
  12. 12.
    L.X. Li, H.C. Cai, Q. Ren, H. Sun, Z.D. Gao, Microstructure and microwave dielectric characteristics of ZnTi(Nb1−xSbx)2O8 ceramics. Ceram. Int. 40, 12213–12217 (2014)CrossRefGoogle Scholar
  13. 13.
    J.H. Park, Y.J. Choi, S. Nahm, J.G. Park, Crystal Structure and microwave dielectric properties of ZnTi(Nb1−xTax)2O8 ceramics. J. Alloys Compd. 509, 6908–6912 (2011)CrossRefGoogle Scholar
  14. 14.
    T. Negas, G. Yeager, S. Bell, N. Coats, I. Minis, BaTi4O9/Ba2Ti9O20-based ceramics resurrected for modern microwave applications. Am. Ceram. Soc. Bull. 72, 80–89 (1993)Google Scholar
  15. 15.
    N. Michiura et al., Role of donor and acceptor ions in the dielectric loss tangent of (Zr0.8Sn0.2)TiO4 dielectric resonator material. J. Am. Ceram. Soc. 78, 793–796 (1995)CrossRefGoogle Scholar
  16. 16.
    D.W. Kim, K.H. Ko, D.K. Kwon, K.S. Hong, Origin of microwave dielectric loss in ZnNb2O6–TiO2. J. Am. Ceram. Soc. 85, 1169–1172 (2010)CrossRefGoogle Scholar
  17. 17.
    R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A32, 751–767 (1976)CrossRefGoogle Scholar
  18. 18.
    J. Zhang, R.Z. Zuo, Effects of Zr substitution on the microstructure and microwave dielectric properties of Li2Zn(Ti1−xZrx)3O8 ceramics. J. Mater. Sci. Mater. Electron. 26, 9219–9224 (2015)CrossRefGoogle Scholar
  19. 19.
    C.F. Tseng, Relationships between Zr substitution for Ti and microwave dielectric properties in Mg(ZrxTi1–x)O3 ceramics. J. Alloys Compd. 509, 9447–9450 (2011)CrossRefGoogle Scholar
  20. 20.
    W.E. Courtney, Analysis and evaluation of a method of measuring the complex permittivity and permeability microwave insulators. IEEE Trans. Microwave Theory Tech. 18, 476–485 (1970)CrossRefADSGoogle Scholar
  21. 21.
    Y. Kobayashi, M. Katoh, Microwave measurement of dielectric properties of low-loss materials by the dielectric rod resonator method. IEEE Trans. Microwave Theory Tech. 33, 586–592 (1985)CrossRefADSGoogle Scholar
  22. 22.
    X.S. Lyu, L.X. Li, S.A. Zhang, H. Sun, B.W. Zhang et al., Crystal structure and microwave dielectric properties of novel (1 − x)ZnZrNb2O8 − xTiO2 ceramics. Mater. Lett. 171, 129–132 (2016)CrossRefGoogle Scholar
  23. 23.
    J.J. Bian, Y.F. Dong, New high Q microwave dielectric ceramics with rock salt structures: (1 − x)Li2TiO3 + xMgO system (0 ≤ x ≤ 0.5). J. Eur. Ceram. Soc. 30, 325–330 (2010)CrossRefGoogle Scholar
  24. 24.
    S. Wu, J. Xue, Y. Fan, Spinel Mg(Al,Ga)2O4 solid solution as high performance microwave dielectric ceramics. J. Am. Ceram. Soc. 97, 3555–3560 (2015)CrossRefGoogle Scholar
  25. 25.
    D. Stroud. The effective medium approximations: some recent developments [J]. Superlattice Microstruct. 23, 567–573 (1997)CrossRefADSGoogle Scholar
  26. 26.
    R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73, 348–366 (1993)CrossRefADSGoogle Scholar
  27. 27.
    Y.Y. Li, X.C. Lu, Y. Zhang, Q.T. Zhang, Characterization of Co0.5(Ti1−xZrx)0.5NbO4 microwave dielectric ceramics based on structural refinement. Ceram. Int. 43, 11516–11522 (2017)CrossRefGoogle Scholar
  28. 28.
    H.T. Yu, X.M. Xue, G.L. Xu, Correlation between Sn substitution for Ti and microwave dielectric properties of magnesium titanate ceramics. Int. J. Appl. Ceram. Technol. 10, E186–E191 (2013)CrossRefGoogle Scholar
  29. 29.
    W.S. Xia, G.Y. Zhang, L.W. Shi, M.M. Zhang, Enhanced microwave dielectric properties of ZnTa2O6 ceramics with Sb5+ ion substitution. Mater. Lett. 24, 64–66 (2014)CrossRefGoogle Scholar
  30. 30.
    S.H. Yoon, D.W. Kim, S.Y. Cho, K.S. Hong, Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds. J. Eur. Ceram. Soc. 26, 2051–2054 (2006)CrossRefGoogle Scholar
  31. 31.
    H.T. Wu, Z.B. Feng, Q.J. Mei, J.D. Guo, J.X. Bi, Correlations of crystal structure, bond energy and microwave dielectric properties of AZrNb2O8 (A = Zn, Co, Mg, Mn) ceramics. J. Alloys Compd. 648, 368–373 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and Engineering, Jingdezhen Ceramic Institute, China National Light Industry Key Laboratory of Functional Ceramic Materials, Energy Storage and Conversion Ceramic Materials Engineering Laboratory of Jiangxi ProvinceJingdezhenChina

Personalised recommendations