Advertisement

Applied Physics A

, 125:77 | Cite as

Rapid synthesis of recyclable and reusable magnetic TiO2@Fe3O4 for degradation of organic pollutant

  • Yong-guang BiEmail author
  • Di Liu
Article

Abstract

The effect of calcination temperature and catalyst dosage on degradation rate of methyl orange has been investigated and 0.04 g TiO2 with 700 °C calcination temperature was selected as the object of doping due to its higher degradation efficiency (99% in less than 1 h), Fe3O4 modified with citric acid was used to improve the recovery and reuse of catalyst, the effect of doping amount of Fe3O4 on the photo-catalytic efficiency of methyl orange has been discussed, and the results showed that the methyl orange degraded above 97% with 20 mg Fe3O4 doped into TiO2 when the TiO2@Fe3O4 was used three times. The particles were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photo-electron spectroscopy; the magnetic properties were measured by PPMS-DynaCool type vibrating magnetometer; the composite showed excellent magnetic response with saturation magnetization of 9.5 emu g−1. Zeta-potential analysis indicated that TiO2 (3.6 mV) and Fe3O4 (− 16.8 mV) are linked by electrical attraction, demonstrating that doping of Fe3O4 is beneficial to the recycle and reuse of catalyst and improves the photo-catalytic efficiency, and TiO2@Fe3O4 is suitable for industrial production.

Notes

Acknowledgements

This work was financially supported by Guangdong Department of Water Resources Science and Technology Innovation Project (no. 2015-20), Guangdong Provincial Archives Research Project (no. YDK-141-2016), and Guangdong Provincial Department of Education Science and Technology Innovation Project (no. 2013KJCX0109).

Compliance with ethical standards

Conflict of interest

I would like to declare on behalf of my coauthors that no any conflict of interest exits in the submission of this manuscript.

References

  1. 1.
    J. Zhang, N. Gan, S. Chen, M. Pan, D. Wu, Y. Cao, J. Chromatogr. A 5, 1401 (2015)Google Scholar
  2. 2.
    Y.G. Bi, D. Liu, X.M. Liu, S.Q. Zhou, Nanosci. Nanotechnol. Lett. 5, 9 (2017)Google Scholar
  3. 3.
    Y. Feng, J.L. Gong, G.M. Zeng, Q.Y. Niu, H.Y. Zhang, C.G. Niu, J.H. Deng, M. Yan, Chem. Eng. J. 2, 162 (2010)Google Scholar
  4. 4.
    D. Robati, B. Mirza, M. Rajabi, O. Moradi, I. Tyagi, S. Agarwal, V.K. Gupta, Chem. Eng. J. 7, 284 (2016)Google Scholar
  5. 5.
    F. Xiao, W. Li, L. Fang, D. Wang, J. Hazard. Mater. 308, 11 (2016)CrossRefGoogle Scholar
  6. 6.
    U. Habiba, T.A. Siddique, T.C. Joo, A. Salleh, B.C. Ang, A.M. Afifi, Carbohydr. Polym. 157, 1568 (2017)CrossRefGoogle Scholar
  7. 7.
    S.A. Hassanzadeh-Tabrizi, M.M. Motlagh, S. Salahshour, Appl. Surf. Sci. 384, 237 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    F. Ahmadi, M. Rahimi-Nasrabadi, A. Fosooni, M. Daneshmand, J. Mater. Sci. Mater. Electron. 9, 27 (2016)Google Scholar
  9. 9.
    Y. Du, W. Ma, P. Liu, B. Zou, J. Ma, J. Hazard. Mater. 308, 58 (2016)CrossRefGoogle Scholar
  10. 10.
    H. Dong, G. Zeng, L. Tang, C. Fan, C. Zhang, X. He, Y. He, Water Res. 79, 128 (2015)CrossRefGoogle Scholar
  11. 11.
    S. Murgolo, F. Petronella, R. Ciannarella, R. Comparelli, A. Agostiano, M.L. Curri, G. Mascolo, Catal. Today 240, 240 (2015)CrossRefGoogle Scholar
  12. 12.
    D. Seok Seo, H. Kim, H. Chul Jung, J. Kook Lee, J. Mater. Res. 3, 18 (2003)Google Scholar
  13. 13.
    G.E. Schaumann, A. Philippe, M. Bundschuh, G. Metreveli, S. Klitzke, D. Rakcheev, A. Grün, S.K. Kumahor, M. Kühn, T. Baumann, Sci. Total Environ. 535, 3 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    T. Wang, H. Jiang, L. Wan, Q. Zhao, T. Jiang, B. Wang, S. Wang, Acta Biomater. 13, 354 (2015)CrossRefGoogle Scholar
  15. 15.
    L. Zeng, Y. Pan, Y. Tian, X. Wang, W. Ren, S. Wang, G. Lu, A. Wu, Biomaterials 57, 93 (2015)CrossRefGoogle Scholar
  16. 16.
    J. Dervaux, P.A. Cormier, S. Konstantinidis, R.D. Ciuccio, O. Coulembier, P. Dubois, R. Snyders, Vacuum 114, 213 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    T.A. Gadallah, K. Fujimura, S. Kato, S. Satokawa, T. Kojima, J. Hazard. Mater. 1, 154 (2008)Google Scholar
  18. 18.
    S. Sönmezoğlu, G. Çankaya, N. Serin, Appl. Phys. A 1, 107 (2012)Google Scholar
  19. 19.
    S. Ngamta, N. Boonprakob, N. Wetchakun, K. Ounnunkad, S. Phanichphant, B. Inceesungvorn, Mater. Lett. 7, 105 (2013)Google Scholar
  20. 20.
    K.R. Reddy, M. Hassan, V.G. Gomes, Appl. Catal. A 489, 1 (2015)CrossRefGoogle Scholar
  21. 21.
    M. Nasirian, Y.P. Lin, C.F. Bustillo-Lecompte, M. Mehrvar, Int. J. Environ. Sci. Technol. 5528, 1 (2017)Google Scholar
  22. 22.
    A.K. Agegnehu, C.J. Pan, M.C. Tsai, J. Rick, W.N. Su, J.F. Lee, B.J. Hwang, Int. J. Hydrog. Energy 16, 41 (2016)Google Scholar
  23. 23.
    A. Razzaq, C.A. Grimes, S.I. In, Carbon 98, 537 (2016)CrossRefGoogle Scholar
  24. 24.
    X. Yan, Y. Xu, B. Tian, J. Lei, J. Zhang, L. Wang, Appl. Catal. B 224, 305 (2017)CrossRefGoogle Scholar
  25. 25.
    A. Šuligoj, U.L. Štangar, A. Ristić, M. Mazaj, D Verhovšek, N.N. Tušar, Appl. Catal. B 184, 119 (2016)CrossRefGoogle Scholar
  26. 26.
    H. Zhang, P. Xu, G. Du, Z. Chen, K. Oh, D. Pan, Z. Jiao, Nano Res. 3, 4 (2011)Google Scholar
  27. 27.
    J. Low, B. Cheng, J. Yu, Appl. Surf. Sci. 392, 658 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    D. Lu, G. Zhang, Z. Wan, Appl. Surf. Sci. 358, 223 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    K. Kang, J. Min, M. Cui, P. Qiu, S. Na, Y. Son, J. Khim, Chem. Eng. J. 264, 522 (2015)CrossRefGoogle Scholar
  30. 30.
    M.A. Habila, Z.A. Alothman, A.M. El-Toni, J.P. Labis, M. Soylak, Talanta 154, 539 (2016)CrossRefGoogle Scholar
  31. 31.
    K.P.O. Mahesh, D.H. Kuo, Appl. Surf. Sci. 12, 357 (2015)Google Scholar
  32. 32.
    Y.J. Zhang, Z.H. Yang, P.P. Song, H.Y. Xu, R. Xu, J. Huang, J. Li, Y. Zhou, Environ. Sci. Pollut. Res. 18, 23 (2016)Google Scholar
  33. 33.
    A. Patchaiyappan, S. Saran, S.P. Devipriya, Korean J. Chem. Eng. 7, 33 (2016)Google Scholar
  34. 34.
    E. Bet-Moushoul, Y. Mansourpanah, K. Farhadi, M. Tabatabaei, Chem. Eng. J. 283, 29 (2016)CrossRefGoogle Scholar
  35. 35.
    S. Mozia, K. Szymański, B. Michalkiewicz, B. Tryba, M. Toyoda, A.W. Morawski, Sep. Purif. Technol. 142, 137 (2015)CrossRefGoogle Scholar
  36. 36.
    A. Abbasi, D. Ghanbari, M. Salavati-Niasari, M. Hamadanian, J. Mater. Sci. Mater. Electron. 5, 27 (2016)Google Scholar
  37. 37.
    G. Shabani, J. Nabiyouni, Saffari, D. Ghanbari, J. Mater. Sci. Mater. Electron. 8, 27 (2016)Google Scholar
  38. 38.
    M. Stefan, C. Leostean, O. Pana, D. Toloman, A. Popa, I. Perhaita, M. Senilă, O. Marincas, L. Barbu-Tudoran, Appl. Surf. Sci. 390, 248 (2016)ADSCrossRefGoogle Scholar
  39. 39.
    N. Wetchakun, B. Incessungvorn, K. Wetchakun, S. Phanichphant, Mater. Lett. 9, 82 (2012)Google Scholar
  40. 40.
    D. Liu, Z.T. Lin, H.X. Tang, S.T. Deng, Y.G. Bi, Phys. Status Solidi A 215, 1–8 (2018).  https://doi.org/10.1002/pssa.201800068 CrossRefGoogle Scholar
  41. 41.
    Y. Zhan, J. Lin, J. Li, Environ. Sci. Pollut. Res. 4, 20 (2013)Google Scholar
  42. 42.
    S.R. Shirsath, D.V. Pinjari, P.R. Gogate, S.H. Sonawane, A.B. Pandit, Ultrason. Sonochem. 1, 20 (2013)Google Scholar
  43. 43.
    X. Yan, C. Xue, B. Yang, G. Yang, Appl. Surf. Sci. 394, 248 (2017)ADSCrossRefGoogle Scholar
  44. 44.
    M.A. Gonzalez-Fernandez, T.E. Torres, M. Andrés-Vergés, R. Costo, P.D.L. Presa, C.J. Serna, M.P. Morales, C. Marquina, M.R. Ibarra, G.F. Goya, J. Solid State Chem. 10, 182 (2009)Google Scholar
  45. 45.
    M. Caretti, S.W. Keulemans, S. Verbruggen, Lenaerts, S.V. Doorslaer, Top. Catal. 58(12–13), 776–782 (2015)CrossRefGoogle Scholar
  46. 46.
    M. Cao, P. Wang, Y. Ao, W. Chao, J. Hou, Q. Jin, Chem. Eng. J. 264, 113 (2015)CrossRefGoogle Scholar
  47. 47.
    M. Lei, N. Wang, L. Zhu, C. Xie, H. Tang, Chem. Eng. J. 4, 241 (2014)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of PharmacyGuangdong Pharmaceutical UniversityGuangzhouChina

Personalised recommendations