Applied Physics A

, 125:39 | Cite as

Nanoscale studies of magnetoelectric coupling in multiferroic BTO–CFO composite

  • Mangamma GeramillaEmail author
  • Ramachandran BalakrishnanEmail author
  • Sairam T. Natarajan
  • Mamidanna S. Ramachandra Rao


We report on the existence of interacting ferromagnetic and ferroelectric nanodomains in multiferroic 0.65BaTiO3–0.35CoFe2O4 (BTO–CFO) composite synthesized using a conventional solid-state route. X-ray diffraction study shows the coexistence of individual phases (BTO and CFO) of the composite material. Nanometric studies on the sample pellet of BTO–CFO composite are carried out using Scanning Probe Microscopy (SPM) to probe local ferroelectric and magnetic ordering. Importantly, the interactive nanodomains of individual phases are distinctly seen in the Atomic Force Acoustic Microscopy (AFAM) and Piezo-Force Microscopy (PFM) studies, which are done to investigate the magnetoelectric coupling in the BTO–CFO composite. Elasticity maps and piezoresponse images show local inhomogeneities with respect to the distribution of magnetoelectric coupling in the composite.



Authors like to thank Dr. Amarendra, IGCAR, India, for his constant help and useful discussions. Authors acknowledge support from Homi Bhabha National Institute (HBNI). Author MSRR acknowledges the Department of Science and Technology, India (Project no. SR/CMP-23/2005).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    D.N. Astrov, The magnetoelectric effect in antiferromagnetics. Sov. Phys. JETP. 11, 708–709 (1960)Google Scholar
  2. 2.
    D.N. Astrov, Magnetoelectric effect in chromium oxide. Sov. Phys. JETP. 13, 729–733 (1961)Google Scholar
  3. 3.
    W. Eerenstein, N.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nature. 442, 759–765 (2006)CrossRefADSGoogle Scholar
  4. 4.
    M. Fiebig, Revival of the magnetoelectric effect. J. Phys. D. Appl. Phys. 38, R123 (2005)CrossRefADSGoogle Scholar
  5. 5.
    V.C. Flores, D.B. Baques, D.C. Flores, J.A.M. Aquino, Enhanced magnetoelectric effect in core-shell particulate composites. J. Appl. Phys. 99, 08J503 (2006)CrossRefGoogle Scholar
  6. 6.
    R.A. Islam, Y. Ni, A.G. Khachaturyan, S. Priya, Giant magnetoelectric effect in sintered multilayered composite structures. J. Appl. Phys. 104, 044103 (2008)CrossRefADSGoogle Scholar
  7. 7.
    K.P. Jayachandran, J.M. Guedes, H.C. Rodrigues, Solutions for maximum coupling in multiferroic magnetoelectric composites by material design. Sci. Rep. 8, 4866 (2018)CrossRefADSGoogle Scholar
  8. 8.
    R.V. Krishnaiah, A. Srinivas, S.V. Kamat, T. Karthik, S. Asthana, Effect of CoFe2O4 mole percentage on multiferroic and magnetoelectric properties of Na0.5Bi0.5TiO3/CoFe2O4 particulate composites. Ceram. Int. 40, 7799–7804 (2014)CrossRefGoogle Scholar
  9. 9.
    M. Liu, X. Li, J. Lou, S. Zheng, K. Dui, N.X. Sun, A modified sol-gel process for multiferroic nanocomposite films. J. Appl. Phys. 102, 083911 (2007)CrossRefADSGoogle Scholar
  10. 10.
    L.W. Martin, A.M. Rappe, Thin-film ferroelectric materials and their applications. Nat. Rev. Mater. 2, 16087 (2016)CrossRefADSGoogle Scholar
  11. 11.
    V.R. Mudinepalli, S.H. Song, B.S. Murty, Enhanced magnetoelectric properties in lead-free Ni0.83Co0.15Cu0.02Fe1.9O4 − δ-Na0.5Bi0.5TiO3 composites by spark plasma sintering. Scr. Mater. 82, 9–12 (2014)CrossRefGoogle Scholar
  12. 12.
    C.W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103, 031101 (2008)CrossRefADSGoogle Scholar
  13. 13.
    M. Naveed-Ul-Haq, V.V. Shvartsman, S. Salamon, H. Wende, H. Trivedi, A. Mumtaz, D.C. Lupascu, A new (Ba,Ca)(Ti,Zr)O3 based multiferroic composite with large magnetoelectric effect. Sci. Rep. 6, 32164 (2016)CrossRefADSGoogle Scholar
  14. 14.
    V.M. Petrov, G. Srinivasan, T.A. Galkina, Microwave magnetoelectric effects in bilayers of single crystal ferrite and functional graded piezoelectric. J. Appl. Phys. 104, 113910 (2008)CrossRefADSGoogle Scholar
  15. 15.
    E.V. Ramana, F. Figueiras, M.P.F. Graca, M.A. Valente, Observation of magnetoelectric coupling and local piezoresponse in modified (Na0.5Bi0.5)TiO3-BaTiO3-CoFe2O4 lead-free composites. Dalton. Trans. 43, 9934–9943 (2014)CrossRefGoogle Scholar
  16. 16.
    J. Ryu, A.V. Carazo, K. Uchino, H.E. Kim, Piezoelectric and magnetoelectric properties of lead zirconate titanate/Ni-ferrite particulate composites. J. Electroceram. 7, 17–24 (2001)CrossRefGoogle Scholar
  17. 17.
    J. Van den Boomgaard, D.R. Terrell, R.A.J. Born, et al. An in situ grown eutectic magnetoelectric composite material. J. Mater. Sci. 9, 1705–1709 (1974)CrossRefADSGoogle Scholar
  18. 18.
    J. Van den Boomgaard, A.M.J.G. van Run, J. van Suchtelen, Piezoelectric-piezomagnetic composite with magnetoelectric effect. Ferroelectrics. 14, 727–728 (1976)CrossRefGoogle Scholar
  19. 19.
    J. Vanden Boomgaard, R.A.J. Born, A sintered magnetoelectric composite material BaTiO3-Ni(Co,Mn)Fe2O4. J. Mater. Sci. 13, 1538–1548 (1978)CrossRefADSGoogle Scholar
  20. 20.
    J. Van Suchtelen, Product properties: a new application of composite materials. Philips. Res. Rep. 27, 28–37 (1972)Google Scholar
  21. 21.
    J. Zhai, Z. Xing, S. Dong, J. Li, D. Viehland, Magnetoelectric laminate composites: an overview. J. Am. Ceram. Soc. 91, 351–358 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Materials Science GroupIndira Gandhi Centre for Atomic ResearchKalpakkamIndia
  2. 2.Department of Physics and Nano Functional Materials Technology CentreIndian Institute of Technology MadrasChennaiIndia
  3. 3.Department of PhysicsNational Dong Hwa UniversityHualienTaiwan

Personalised recommendations