Advertisement

Applied Physics A

, 125:32 | Cite as

Stuctural, optical and radiation shielding properties of zinc boro-tellurite alumina glasses

  • Kawa M. Kaky
  • M. I. Sayyed
  • Farah Laariedh
  • Alyaa H. Abdalsalam
  • H. O. Tekin
  • S. O. BakiEmail author
Article

Abstract

In this work, boro-telluride glasses with additional zinc, aluminum, and alkali–alkaline modifiers have been synthesized using the melt-quenching–annealing method. Six glasses were fabricated with composition of [(60 − x)B2O3–(10 + x)TeO2–10ZnO–10Al2O3–5Li2O–5MgO] all in mol% and x varied from 0, 10, 20, 30, 40 and 50. The aim of this work is to understand the effect of changing the main glass former from B2O3 → TeO2, to obtain new optical materials. To confirm the amorphous nature of these six glasses, X-ray diffraction was characterized for all six glasses from 10° to 80°. Optical absorption with wavelength range 200–800 nm in room temperature was measured, and the optical absorption coefficient α(λ) calculated to obtain the cutoff wavelength. In addition, gamma photons shielding features of the prepared K1–K6 glasses were evaluated by means of some essential parameters such as mass attenuation coefficients (µ/ρ) and effective atomic number (Zeff) at five energies between 0.356 and 1.33 MeV. No significant difference between the theoretical and simulation µ/ρ values was found. The effective atomic number results indiacte that as the TeO2 content increases, the photons’ attenuation increases. The number of interactions of gamma photons with K6 sample (which contains the maximum amount of TeO2) is relatively high (in comparison to the rest of the samples), which results in more attenuation and thus better shielding features for K6.

Notes

Acknowledgements

The authors would like to gratefully acknowledge the use of the services and facilities of Universiti Putra Malaysia (UPM), Malaysia, where this work was supported by UPM under GP-IPM/2016/9484400 Grant. Also, the authors would like to thank Prof. Mohamed Bourham, North Carolina State University, Department of Nuclear Engineering, Raleigh, USA, for his useful discussion.

References

  1. 1.
    J. Bernier, E.J. Hall, A. Giaccia, Radiation oncology: a century of achievements. Nat. Rev. Cancer 4, 737–747 (2004).  https://doi.org/10.1038/nrc1451 CrossRefGoogle Scholar
  2. 2.
    L. Xing, B. Thorndyke, E. Schreibmann, Y. Yang, T.F. Li, G.Y. Kim, G. Luxton, A. Koong, Overview of image-guided radiation therapy. Med. Dosim. 31, 91–112 (2006).  https://doi.org/10.1016/j.meddos.2005.12.004 CrossRefGoogle Scholar
  3. 3.
    M.I. Sayyed, H.O. Tekin, E.E. Altunsoy, S. Shamsan, M. Obaid, Almatari, Radiation shielding study of tellurite tungsten glasses with different antimony oxide as transparent shielding materials using MCNPX code. J. Non-Cryst. Solids 498, 167–172 (2018)ADSCrossRefGoogle Scholar
  4. 4.
    S.S. Obaid, M.I. Sayyed, D.K. Gaikwad, P.P. Pawar, Attenuation coefficients and exposure buildup factor of some rocks for gamma ray shielding applications. Radiat. Phys. Chem. 148, 86–94 (2018).  https://doi.org/10.1016/j.radphyschem.2018.02.026 ADSCrossRefGoogle Scholar
  5. 5.
    M. Dong, X. Xue, A. Kumar, H. Yang, M.I. Sayyed, S. Liu, E. Bu, A novel method of utilization of hot dip galvanizing slag using the heat waste from itself for protection from radiation. J. Hazard. Mater. 344, 602–614 (2018).  https://doi.org/10.1016/j.jhazmat.2017.10.066 CrossRefGoogle Scholar
  6. 6.
    M.I. Sayyed, H.O. Tekin, O. Kılıcoglu, O. Agar, M.H.M. Zaid, Shielding features of concrete types containing sepiolite mineral: comprehensive study on experimental, XCOM and MCNPX results. Results Phys. 11, 40–45 (2018)ADSCrossRefGoogle Scholar
  7. 7.
    M. Dogra, K.J. Singh, K. Kaur, V. Anand, P. Kaur, Gamma ray shielding and structural properties of Bi2O3-B2O3-Na2WO4 glass system. Univers. J. Phys. Appl. 11, 190–195 (2017).  https://doi.org/10.13189/ujpa.2017.110508 CrossRefGoogle Scholar
  8. 8.
    H.O. Tekin, T.T. Erguze, M.I. Sayyed, V.P. Singh, T. Manici, E.E. Altunsoy, O. Agar, An investigation on shielding properties of different granite samples using mcnpx code, Digest Journal of Nanomaterials and Biostructures, 13, 381–389 (2018)Google Scholar
  9. 9.
    R. Bagheri, A.K. Moghaddam, S.P. Shirmardi, B. Azadbakht, M. Salehi, Determination of gamma-ray shielding properties for silicate glasses containing Bi2O3, PbO, and BaO. J. Non. Cryst. Solids. 479, 62–71 (2018).  https://doi.org/10.1016/j.jnoncrysol.2017.10.006 ADSCrossRefGoogle Scholar
  10. 10.
    D. Han, W. Kim, S. Lee, H. Kim, P. Romero, Assessment of gamma radiation shielding properties of concrete containers containing recycled coarse aggregates. Constr. Build. Mater. 163, 122–138 (2018).  https://doi.org/10.1016/j.conbuildmat.2017.12.078 CrossRefGoogle Scholar
  11. 11.
    M. Mariyappan, K. Marimuthu, M.I. Sayyed, M.G. Dong, U. Kara, Effect Bi2O3 on the physical, structural and radiation shielding properties of Er3+ ions doped bismuth sodiumfluoroborate glasses. J. Non-Cryst. Solids 499, 75–85 (2018)ADSCrossRefGoogle Scholar
  12. 12.
    C. Eke, O. Agar, C. Segebade, I. Boztosun, Attenuation properties of radiation shielding materials such as granite and marble against γ-ray energies between 80 and 1350 keV. Radiochim. Acta 105, 851–863 (2017).  https://doi.org/10.1515/ract-2016-2690 CrossRefGoogle Scholar
  13. 13.
    F. Akman, R. Durak, M.F. Turhan, M.R. Kaçal, Studies on effective atomic numbers, electron densities from mass attenuation coefficients near the K edge in some samarium compounds. Appl. Radiat. Isot. 101, 107–113 (2015).  https://doi.org/10.1016/j.apradiso.2015.04.001 CrossRefGoogle Scholar
  14. 14.
    F. Akman, I.H. Geçibesler, M.I. Sayyed, S.A. Tijani, A.R. Tufekci, I. Demirtas, Determination of some useful radiation interaction parameters for waste foods. Nucl. Eng. Technol. 50, 944–949 (2018).  https://doi.org/10.1016/j.net.2018.05.007 CrossRefGoogle Scholar
  15. 15.
    K. Siva Rama, K. Reddy, K. Swapna, S. Mahamuda, M. Venkateswarlu, M.V.V.K. Srinivas Prasad, A.S. Rao, G.V. Prakash, Structural, optical absorption and photoluminescence spectral studies of Sm3+ ions in Alkaline-Earth Boro Tellurite glasses, Opt. Mater. (Amst). 79, 21–32 (2018).  https://doi.org/10.1016/j.optmat.2018.03.005 ADSCrossRefGoogle Scholar
  16. 16.
    K. Keshavamurthy, B. Eraiah, Influence of europium (Eu3+) ions on the optical properties of silver lead borate glasses. Bull. Mater. Sci. 38, 1381–1384 (2015).  https://doi.org/10.1007/s12034-015-1024-7 CrossRefGoogle Scholar
  17. 17.
    A. Madhu, B. Eraiah, Lanthanum lead boro-tellurite glasses doped with samarium trioxide for luminescent devices application. AIP Conf. Proc. 1942, 3–7 (2018).  https://doi.org/10.1063/1.5028810 CrossRefGoogle Scholar
  18. 18.
    K. Maheshvaran, K. Marimuthu, Optical studies on Eu3+ doped boro-tellurite glasses. AIP Conf. Proc. 1447, 549–550 (2012).  https://doi.org/10.1063/1.4710121 ADSCrossRefGoogle Scholar
  19. 19.
    K. Maheshvaran, K. Linganna, K. Marimuthu, Composition dependent structural and optical properties of Sm3+ doped boro-tellurite glasses. J. Lumin. 131, 2746–2753 (2011).  https://doi.org/10.1016/j.jlumin.2011.06.047 CrossRefGoogle Scholar
  20. 20.
    R.S. Kundu, S. Dhankhar, R. Punia, K. Nanda, N. Kishore, Bismuth modified physical, structural and optical properties of mid-IR transparent zinc boro-tellurite glasses. J. Alloys Compd. 587, 66–73 (2014).  https://doi.org/10.1016/j.jallcom.2013.10.141 CrossRefGoogle Scholar
  21. 21.
    P. Karthikeyan, R. Vijayakumar, K. Marimuthu, Luminescence studies on Dy3+doped calcium boro-tellurite glasses for White light applications. Phys. B Condens. Matter. 521, 347–354 (2017).  https://doi.org/10.1016/j.physb.2017.07.018 ADSCrossRefGoogle Scholar
  22. 22.
    P. Gayathri Pavani, K. Sadhana, V. Chandra Mouli, Optical, physical and structural studies of boro-zinc tellurite glasses. Phys. B Condens. Matter. 406, 1242–1247 (2011).  https://doi.org/10.1016/j.physb.2011.01.006 ADSCrossRefGoogle Scholar
  23. 23.
    S.S. Science, M.D. Khairul Zaman, Optical and structural properties of PbO-B2O3-TeO2 glasses. J. Phys. Condens. Matter (2012)  https://doi.org/10.1088/0953-8984/20/7/075228.CrossRefGoogle Scholar
  24. 24.
    R. Khaldari, A. Mesbahi, U. Kara, Monte Carlo calculation of shielding properties of newly developed heavy concretes for megavoltage photon beam spectra used in radiation therapy. J. Med. Phys. 13 (2016) 250–260.  https://doi.org/10.22038/ijmp.2017.19206.1175 CrossRefGoogle Scholar
  25. 25.
    K.B. Sapnar, L.A. Ghule, A. Bankar, S. Zinjarde, V.N. Bhoraskar, K.M. Garadkar, S.D. Dhole, Antimicrobial activity of 6.5 MeV electron-irradiated ZnO nanoparticles synthesized by microwave-assisted method. Int. J. Green Nanotechnol. 4(4), 477–483 (2012)CrossRefGoogle Scholar
  26. 26.
    K. Maheshvaran, K. Marimuthu, Optical band gap studies on Dy3+ doped boro-tellurite glasses. In Emerging trends in science, engineering and technology (Springer, New Delhi, 2012), pp. 595–602CrossRefGoogle Scholar
  27. 27.
    K.M. Kaky, G. Lakshminarayana, S.O. Baki, I.V. Kityk, Y.H. Taufiq-Yap, M.A. Mahdi, Structural, thermal and optical absorption features of heavy metal oxides doped tellurite rich glasses. Results Phys. 7, 166–174 (2017).  https://doi.org/10.1016/j.rinp.2016.12.013 ADSCrossRefGoogle Scholar
  28. 28.
    G. Lakshminarayana, K.M. Kaky, S.O. Baki, S. Ye, A. Lira, I.V. Kityk, M.A. Mahdi, Concentration dependent structural, thermal, and optical features of Pr3+-doped multicomponent tellurite glasses. J. Alloys Compd. 686, 769–784 (2016).  https://doi.org/10.1016/j.jallcom.2016.06.069 CrossRefGoogle Scholar
  29. 29.
    M. Anand Pandarinath, G. Upender, K. Narasimha Rao, D. Suresh Babu, Thermal, optical and spectroscopic studies of boro-tellurite glass system containing ZnO. J. Non. Cryst. Solids. 433, 60–67 (2016).  https://doi.org/10.1016/j.jnoncrysol.2015.11.028 ADSCrossRefGoogle Scholar
  30. 30.
    K. Selvaraju, K. Marimuthu, T.K. Seshagiri, S.V. Godbole, Thermal, structural and spectroscopic investigations on Eu3+doped boro-tellurite glasses. Mater. Chem. Phys. 131, 204–210 (2011).  https://doi.org/10.1016/j.matchemphys.2011.09.006 CrossRefGoogle Scholar
  31. 31.
    S. Rada, M. Rada, E. Culea, Structure and molecular modeling of tungsten borotellurate glasses. J. Alloys Compd. 552, 10–13 (2013).  https://doi.org/10.1016/j.jallcom.2012.10.061 CrossRefGoogle Scholar
  32. 32.
    M.S. Gaafar, I. Shaarany, T. Alharbi, Structural investigations on some cadmium-borotellurate glasses using ultrasonic, FT-IR and X-ray techniques. J. Alloys Compd. 616, 625–632 (2014).  https://doi.org/10.1016/j.jallcom.2014.07.145 CrossRefGoogle Scholar
  33. 33.
    S. Rada, M. Culea, E. Culea, Structure of TeO2· B2O3 glasses inferred from infrared spectroscopy and DFT calculations. J. Non. Cryst. Solids. 354, 5491–5495 (2008).  https://doi.org/10.1016/j.jnoncrysol.2008.09.009 ADSCrossRefGoogle Scholar
  34. 34.
    N. Santha, S. Shamsudeen, N.T. Karunakaran, J. Isuhak Naseemabeevi, Spectroscopic, dielectric and optical properties of 60ZnO–30B2O3–10SiO2 Glass–Al2O3 composites. Int. J. Appl. Ceram. Technol. 8, 1042–1049 (2011).  https://doi.org/10.1111/j.1744-7402.2011.02667.x CrossRefGoogle Scholar
  35. 35.
    D. Singh, K. Singh, G. Singh, S. Manupriya, M. Mohan, G. Arora, Sharma, Optical and structural properties of ZnO–PbO–B2O3 and ZnO–PbO–B2O3 –SiO2 glasses. J. Phys. Condens. Matter 20, 075228 (2008).  https://doi.org/10.1088/0953-8984/20/7/075228 ADSCrossRefGoogle Scholar
  36. 36.
    K.M. Kaky, G. Lakshminarayana, S.O. Baki, Y.H. Taufiq-Yap, I.V. Kityk, M.A. Mahdi, Structural, thermal, and optical analysis of zinc boro-aluminosilicate glasses containing different alkali and alkaline modifier ions. J. Non. Cryst. Solids. 456, 55–63 (2017).  https://doi.org/10.1016/j.jnoncrysol.2016.10.044 ADSCrossRefGoogle Scholar
  37. 37.
    J.N. Ayuni, M.K. Halimah, Z.A. Talib, H.A.A. Sidek, W.M. Daud, A.W. Zaidan, A.M. Khamirul, Optical properties of ternary TeO2–B2O3–ZnO glass system, IOP Conf. Ser. Mater. Sci. Eng. 17 (2011).  https://doi.org/10.1088/1757-899X/17/1/012027
  38. 38.
    B. Shan, Z. Chang, Dramatic extension of the high-order harmonic cutoff by using a long-wavelength driving field. Phys. Rev. A At. Mol. Opt. Phys. 65, 4 (2002).  https://doi.org/10.1103/PhysRevA.65.011804 CrossRefGoogle Scholar
  39. 39.
    F. El-Diasty, F.A. Abdel Wahab, M. Abdel-Baki, Optical band gap studies on lithium aluminum silicate glasses doped with Cr3+ ions. J. Appl. Phys. 100, 093511 (2006).  https://doi.org/10.1063/1.2362926 ADSCrossRefGoogle Scholar
  40. 40.
    N. Kaur, A. Khanna, Structural characterization of borotellurite and alumino-borotellurite glasses. J. Non. Cryst. Solids. 404, 116–123 (2014).  https://doi.org/10.1016/j.jnoncrysol.2014.08.002 ADSCrossRefGoogle Scholar
  41. 41.
    M.H.M. Zaid, K.A. Matori, S.H. Abdul Aziz, A. Zakaria, M.S.M. Ghazali, Effect of ZnO on the physical properties and optical band gap of soda lime silicate glass. Int. J. Mol. Sci. 13, 7550–7558 (2012).  https://doi.org/10.3390/ijms13067550 CrossRefGoogle Scholar
  42. 42.
    D. Souri, K. Shomalian, Band gap determination by absorption spectrum fitting method (ASF) and structural properties of different compositions of (60-x) V2O5-40TeO2-xSb2O3 glasses. J. Non. Cryst. Solids. 355, 1597–1601 (2009).  https://doi.org/10.1016/j.jnoncrysol.2009.06.003 ADSCrossRefGoogle Scholar
  43. 43.
    M.I. Sayyed, G. Lakshminarayana, Structural, thermal, optical features and shielding parameters investigations of optical glasses for gamma radiation shielding and defense applications. J. Non-Cryst. Solids 487, 53–59 (2018)ADSCrossRefGoogle Scholar
  44. 44.
    M.J. Berger, J.H. Hubbell, S.M. Seltzer, J. Chang, J.S. Coursey, R. Sukumar, K. Zucker, D.S. Olsen, http://www.nist.gov/pml/data/xcom/index.cfm (2010)
  45. 45.
    P. Limkitjaroenporn, J. Kaewkhao, W. Chewpraditkul, P. Limsuwan, Mass attenuation coefficient and effective atomic number of Ag/Cu/Zn alloy at different photon energy by compton scattering technique. Proc. Eng. 32, 847–854 (2012)CrossRefGoogle Scholar
  46. 46.
    M. Kurudirek, N. Chutithanapanon, R. Laopaiboon, C. Yenchai, C. ootjomchai, Effect of Bi2O3 on gamma ray shielding and structural properties of borosilicate glasses recycled from high pressure sodium lamp glass. J. Alloy. Compd. 745, 355–364 (2018)CrossRefGoogle Scholar
  47. 47.
    A.M. Zoulfakar, A.M. Abdel-Ghany, T.Z. Abou-Elnasr, A.G. Mostafa, S.M. Salem, H.H. El-Bahnaswy, Effect of antimony-oxide on the shielding properties of some sodium-borosilicate glasses. Appl. Radiat. Isot. 127, 269–274 (2017)CrossRefGoogle Scholar
  48. 48.
    S. Yasmin, B.S. Barua, M.U. Khandaker, M.A. Rashid, D.A. Bradley, M.A. Olatunji, M. Kamal, Studies of ionizing radiation shielding effectiveness of silica-based commercial glasses used in Bangladeshi dwellings. Results Phys. 9, 541–549 (2018)ADSCrossRefGoogle Scholar
  49. 49.
    M.I. Sayyed, G. Lakshminarayana, M.A. Mahdi, Evaluation of radiation shielding parameters for optical materials. Chalcogenide Lett. 14, 43–47 (2017)Google Scholar
  50. 50.
    M.I. Sayyed, R. El-Mallawany, Shielding properties of (100 − x) TeO2-(x)MoO3 glasses. Mater. Chem. Phys. 201, 50–56 (2017)CrossRefGoogle Scholar
  51. 51.
    M.I. Sayyed, G. Lakshminarayana, M.G. Dong, M. Çelikbilek Ersundu, A.E. Ersundu, I.V. Kityk, Investigation on gamma and neutron radiation shielding parameters for BaO/SrO–Bi2O3–B2O3 glasses. Radiat. Phys. Chem. 145, 26–33 (2018)ADSCrossRefGoogle Scholar
  52. 52.
    P. Yasaka, N. Pattanaboonmee, H.J. Kim, P. Limkitjaroenporn, J. Kaewkhao, Gamma radiation shielding and optical properties measurements of zinc bismuth borate glasses. Ann. Nucl. Energy 68, 4–9 (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Kawa M. Kaky
    • 1
  • M. I. Sayyed
    • 2
  • Farah Laariedh
    • 2
  • Alyaa H. Abdalsalam
    • 3
  • H. O. Tekin
    • 4
    • 5
  • S. O. Baki
    • 6
    Email author
  1. 1.Directorate of Communication and Information TechnologyCouncil of Representatives of IraqBaghdadIraq
  2. 2.Department of Physics, Faculty of ScienceUniversity of TabukTabukSaudi Arabia
  3. 3.Nanotechnology and Advanced Materials Research CenterUniversity of TechnologyBaghdadIraq
  4. 4.Radiotherapy Department, Vocational School of Health ServicesUskudar UniversityIstanbulTurkey
  5. 5.Medical Radiation Research Center (USMERA)Uskudar UniversityIstanbulTurkey
  6. 6.Department of Physics, Faculty of ScienceUniversiti Putra MalaysiaSerdangMalaysia

Personalised recommendations