Applied Physics A

, 125:27 | Cite as

V-groove etched 1-eV-GaInNAs nipi solar cell

  • Agageldi Muhammetgulyyev
  • Baris KinaciEmail author
  • Arto Aho
  • Yesim Yalcin
  • Caglar Cetinkaya
  • Furkan Kuruoglu
  • Mircea Guina
  • Ayse Erol


Simulated and experimental properties of a Ga1−xInxAs1−yNy nipi solar cell involving V-grooves for contact formation are reported. In particular, using a drift–diffusion model, we simulate the conversion efficiency, the short-circuit current density (JSC), and the open-circuit voltage (VOC) as a function of the number of nipi junctions. Based on the modelling results, optimized nipi solar cell incorporating five n–p junction pairs was grown on a p-type GaAs (100) substrate using molecular beam epitaxy (MBE). The bandgap of the nipi structure was determined to be 1 eV. The metal contacts of the nipi solar cell structure were processed in the form of mesa and V-groove. These shapes enable both vertical and horizontal carrier transport within the solar cell. The effect of thermal annealing on J–V characteristics of both type of devices is finally assessed. The results point out that the V-groove sample has better photovoltaic characteristics than the mesa structure sample.



This work was supported by TUBITAK with the project no: 115F419, and Istanbul University Scientific Research Project Coordination Unit with the project no: 53196.


  1. 1.
    A. Erol, Dilute III–V nitride semiconductor and material systems (Springer, Berlin, 2008)CrossRefGoogle Scholar
  2. 2.
    M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki, Yazawa, Y 1996 GaInNAs: a novel material for long-wavelength-range laser diodes with excellent high-temperature performance Jpn. J. Appl. Phys. 35 1273–5Google Scholar
  3. 3.
    D.J. Friedman, J.F. Geisz, S.R. Kurtz, J.M. Olson 1998 1-eV GaInNAs solar cells for ultrahigh- efficiency multijunction devices 2nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion pp 3–7Google Scholar
  4. 4.
    S. Kurtz, A.A. Allerman, E.D. Jones, J.M. Gee, J.J. Banas, B.E. Hammons, InGaAsN solar cells with 1.0 eV band gap, lattice matched to GaAs. Appl. Phys. Lett. 74, 729–731 (1999)CrossRefADSGoogle Scholar
  5. 5.
    S. Kurtz, J.F. Geisz, D.J. Friedman, J.M. Olson, A. Duda, N.H. Karam, R.R. King, J.H. Ermer, D.E. Joslin Modeling of electron diffusion length in GaInAsN solar cells Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference—2000 (Cat. No.00CH37036) (IEEE) pp 1210–3Google Scholar
  6. 6.
    O. Donmez, F. Sarcan, S.B. Lisesivdin, M.P. Vaughan, A. Erol, M. Gunes, M.C. Arikan, J. Puustinen, M. Guina, Analytic modeling of temperature dependence of 2D carrier mobility in as-grown and annealed GaInNAs/GaAs quantum well structures. Semicond. Sci. Technol. 29, 125009 (2014)CrossRefADSGoogle Scholar
  7. 7.
    D.J. Friedman, J.F. Geisz, W. Metzger, K, S.W. Johnston, Trap-dominated minority-carrier recombination in GaInNAs pn junctions. Appl. Phys. Lett. 83, 698–700 (2003)CrossRefADSGoogle Scholar
  8. 8.
    S.Y. Xie, S.F. Yoon, S.Z. Wang, Effects of thermal annealing on deep-level defects and minority-carrier electron diffusion length in Be-doped InGaAsN. J. Appl. Phys. 97, 73702 (2005)CrossRefGoogle Scholar
  9. 9.
    K. Volz, D. Lackner, I. Németh, B. Kunert, W. Stolz, C. Baur, F. Dimroth, A.W. Bett, Optimization of annealing conditions of (GaIn)(NAs) for solar cell applications. J. Cryst. Growth 310, 2222–2228 (2008)CrossRefADSGoogle Scholar
  10. 10.
    A. Aho, R. Isoaho, A. Tukiainen, G. Gori, R. Campesato, M. Guina 2018 Dilute nitride triple junction solar cells for space applications: Progress towards highest AM0 efficiency. Prog. Photovoltaics Res. Appl. 6–10Google Scholar
  11. 11.
    B. Royall, Balkan, N 2009 Dilute nitride n-i-p-i solar cells Microelectronics J. 40 396–8Google Scholar
  12. 12.
    R.E. Williams, Gallium arsenide processing techniques (ARTECH HOUSE, INC), Dedham, 1984)Google Scholar
  13. 13.
    A. Al-Bustani, M.Y. Feteha, Triple heterojunction ALGaAs-GaAs solar cells with front V-groove surface. Renew. Energy 8, 348–353 (1996)CrossRefGoogle Scholar
  14. 14.
    C.D. Cress, S.J. Polly, S.M. Hubbard, R.P. Raffaelle, R.J. Walters, Demonstration of a nipi-diode photovoltaic. Prog. Photovoltaics Res. Appl. 19, 552–559 (2011)CrossRefGoogle Scholar
  15. 15.
    S. Mazzucato, B. Royall, R. Ketlhwaafetse, N. Balkan, J. Salmi, J. Puustinen, M. Guina, A. Smith, Gwilliam, R 2012 Dilute nitride and GaAs n-i-p-i solar cells. Nanoscale Res. Lett. 7 631Google Scholar
  16. 16.
    M.A. Slocum, D.V. Forbes, J.S. McNatt, S.M. Hubbard 2011 Epitaxial regrowth contacts for the nipi photovoltaic device Conf. Rec. IEEE Photovolt. Spec. Conf. 001914–8Google Scholar
  17. 17.
    M. Wagner, J.P. Leburton 1984 Superlattices and multilayer structures for high efficiency solar cells Google Scholar
  18. 18.
    B. Royall, N. Balkan, Modelling of multijunction solar cells with dilute nitride n-i-p-i junctions. Phys. Status Solidi Basic Res. 248, 1203–1206 (2011)CrossRefADSGoogle Scholar
  19. 19.
    S.M. Sze, Physics of semiconductor devices (Wiley, New Jersey, 1981)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Agageldi Muhammetgulyyev
    • 1
  • Baris Kinaci
    • 1
    Email author
  • Arto Aho
    • 2
  • Yesim Yalcin
    • 1
  • Caglar Cetinkaya
    • 1
  • Furkan Kuruoglu
    • 1
  • Mircea Guina
    • 2
  • Ayse Erol
    • 1
  1. 1.Department of Physics, Faculty of ScienceIstanbul UniversityIstanbulTurkey
  2. 2.Optoelectronics Research CentreTampere University of TechnologyTampereFinland

Personalised recommendations