Advertisement

Applied Physics A

, 125:14 | Cite as

CdO-implanted hexagonal ZnO nanoplatelets: red-shifted emission and enhanced charge carrier-resistance and bacteria-inactivation

  • C. KarunakaranEmail author
  • A. Vijayabalan
  • P. Vinayagamoorthy
Article
  • 45 Downloads

Abstract

Nanocrystalline ZnO is an innocuous, stable, water-insoluble antibacterial agent and enhancement of its bactericidal activity without hampering the non-toxicity and stability is of scientific as well as technological interest. Hexagonal ZnO nanoplatelets implanted with CdO were obtained by a two-step synthesis of precipitation accompanied by hydrothermal process. The synthesized nanoplates were characterized by energy dispersive X-ray spectroscopy, X-ray diffraction, selected area electron diffraction, scanning electron microscopy and transmission electron microscopy. Insertion of CdO nanocore in ZnO lattice increases largely the charge transfer resistance but does not influence the band gap energy. The implantation suppresses the violet emission but enhances the blue–green emission, which is due to variation in the relative abundance of different defects. The bactericidal activity of the synthesized novel CdO-implanted ZnO nanocomposite is larger than those of precursor CdO and pristine ZnO.

Notes

Acknowledgements

Prof. C. Karunakaran thanks the Council of Scientific and Industrial Research (CSIR), New Delhi, for the Emeritus Scientist Scheme 21(0887)/12/EMR-II.

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interest.

References

  1. 1.
    J. Ahmad, S. Akhter, Md Rizwanullah, S. Amin, M. Rahman, M.Z. Ahmad, M.A. Rizvi, M.A. Kamal, F.J. Ahmad, Nanotechnol. Sci. Appl. 8, 55 (2015)Google Scholar
  2. 2.
    I. Gehrke, A. Geiser, A. Somborn-Schulz, Nanotechnol. Sci. Appl. 8, 1 (2015)CrossRefGoogle Scholar
  3. 3.
    S.S. Mukhopadhyay, Nanotechnol. Sci. Appl. 7, 63 (2014)CrossRefGoogle Scholar
  4. 4.
    K. Mahmoudi, C.G. Hadjipanayis, Front. Chem. 2, 109 (2014)CrossRefGoogle Scholar
  5. 5.
    A. Moezzi, A.M. McDonagh, M.B. Cortie, Chem. Eng. J. 185–186, 1 (2012)CrossRefGoogle Scholar
  6. 6.
    C. Klingshirn, Chem. Phys. Chem. 8, 782 (2007)CrossRefGoogle Scholar
  7. 7.
    S.C. Pillai, J.M. Kelly, R. Ramesh, D.E. McCormack, J. Mater. Chem. C 1, 3268 (2013)CrossRefGoogle Scholar
  8. 8.
    H. Faber, M. Klaumunzer, M. Voigt, D. Galli, B.F. Vieweg, W. Peukert, E. Spiecker, M. Halik, Nanoscale 3, 897 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    D. Vanmaekelbergh, L.K. van Vugt, Nanoscale 3, 2783 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    X.-P. Shen, A.-H. Yuan, Y.-M. Hu, Y. Jiang, Z. Xu, Z. Hu, Nanotechnol. 16, 2039 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    M. Faisal, S.B. Khan, M.M. Rahman, A. Khan, M. Muneer, M.M. Abdullah, Micro Nanosyst. 5, 38 (2013)CrossRefGoogle Scholar
  12. 12.
    B. Fang, C. Zhang, G. Wang, M. Wang, Y. Ji, Sens. Actuators B 155, 304 (2011)CrossRefGoogle Scholar
  13. 13.
    D. Barreca, D. Bekermann, E. Comini, A. Devi, R.A. Fischer, A. Gasparotto, C. Maccato, G. Sberveglieri, E. Tondello, Sens. Actuators B 149, 1 (2010)CrossRefGoogle Scholar
  14. 14.
    Y. Zhang, Z. Kang, X. Yan, Q. Liao, Sci. China Mater. 58, 60 (2015)CrossRefGoogle Scholar
  15. 15.
    J.A. Anta, E. Guillen, R. Tena-Zaera, J. Phys. Chem. C 116, 11413 (2012)CrossRefGoogle Scholar
  16. 16.
    B. Faure, G. Salazar-Alvarez, A. Ahniyaz, I. Villaluenga, G. Berriozabal, Y.R.De Miguel, L. Bergstrom, Sci. Technol. Adv. Mater. 14, 023001 (2013)CrossRefGoogle Scholar
  17. 17.
    M. Raula, Md.H. Rashid, T.K. Paira, E. Dinda, T.K. Mandal, Langmuir 26, 8769 (2010)CrossRefGoogle Scholar
  18. 18.
    P. Preeti, M.M. Abdullah, S. Ikram, Nano Res. Appl. 2, 1 (2016)Google Scholar
  19. 19.
    S.G. Kumar, K.S.R.K. Rao, RSC Adv. 5, 3306 (2015)CrossRefGoogle Scholar
  20. 20.
    H.W. Jeong, S.-Y. Choi, S.-H. Hong, S.K. Lim, D.S. Han, A. Abdel-Wahab, H. Park, J. Phys. Chem. C 118, 21331 (2014)CrossRefGoogle Scholar
  21. 21.
    A. Sirelkhatim, S. Mahmud, A. Seeni, N.H.M. Kaus, L.C. Ann, S.K.M. Bakhori, H. Hasan, D. Mohamad, Nano-Micro Lett. 7, 219 (2015)CrossRefGoogle Scholar
  22. 22.
    K.R. Raghupathi, R.T. Koodali, A.C. Manna, Langmuir 27, 4020 (2011)CrossRefGoogle Scholar
  23. 23.
    V.K. Sharma, R.A. Yngard, Y. Lin, Adv. Colloid Interface Sci. 145, 83 (2009)CrossRefGoogle Scholar
  24. 24.
    R. Kumar, A. Umar, G. Kumar, H.S. Nalwa, Ceram. Int. 43, 3940 (2017)CrossRefGoogle Scholar
  25. 25.
    E.-S. Jang, J. Korean Ceram. Soc. 54, 167 (2017)CrossRefGoogle Scholar
  26. 26.
    S. Baek, S.H. Joo, N. Kumar, M. Toborek, J. Environ. Chem. Eng. 5, 3024 (2017)CrossRefGoogle Scholar
  27. 27.
    A. Ananth, S. Dharaneedharan, H.-J. Seo, M.-S. Heo, J.-H. Boo, Chem. Eng. J. 322, 742 (2017)CrossRefGoogle Scholar
  28. 28.
    S. Rezaei-Zarchi, A. Javed, M.J. Ghani, S. Soufian, F.B. Firouzabadi, A.B. Moghaddam, S.H. Mirjalili, Iran J. Pathol. 5, 83 (2010)Google Scholar
  29. 29.
    K. Karthik, S. Dhanuskodi, C. Gopinath, S. Sivaramakrishnan, Spectrochim. Acta A 139, 7 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    C. Karunakaran, A. Vijayabalan, G. Manikandan, Superlatt. Microstruct. 51, 443 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    T.S. Nawrot, J.A. Staessen, H.A. Roels, E. Munters, A. Cuypers, T. Richart, A. Ruttens, K. Smeets, H. Clijsters, J. Vangronsveld Biometals 23, 769 (2010)CrossRefGoogle Scholar
  32. 32.
    S. Sinha, S.K. Mukherjee, Braz. J. Microbiol. 40, 655 (2009)CrossRefGoogle Scholar
  33. 33.
    J.L. Blum, J.Q. Xiong, C. Hoffman, J.T. Zelikoff, Toxicol. Sci. 126, 478 (2012)CrossRefGoogle Scholar
  34. 34.
    S.T. Hossain, S.K. Mukherjee, Langmuir 28, 16614 (2012)CrossRefGoogle Scholar
  35. 35.
    C. Karunakaran, P. Vinayagamoorthy, Catal. Today 284, 114 (2017)CrossRefGoogle Scholar
  36. 36.
    C. Karunakaran, P. Vinayagamoorthy, J. Jayabharathi, Langmuir 30, 15031 (2014)CrossRefGoogle Scholar
  37. 37.
    C. Karunakaran, P. Vinayagamoorthy, New J. Chem. 40, 1845 (2016)CrossRefGoogle Scholar
  38. 38.
    C. Karunakaran, P. Vinayagamoorthy, J. Jayabharathi, RSC Adv. 6, 1782 (2016)CrossRefGoogle Scholar
  39. 39.
    C. Karunakaran, P. Vinayagamoorthy, Mater. Res. Express 3, 115501 (2016)ADSCrossRefGoogle Scholar
  40. 40.
    M.C.H. McKubre, D.D. Macdonald, in Impedance Spectroscopy. Theory, Experiment and Applications, ed. by E. Barsoukov, J.R. Macdonald (Wiley, New Jersy, 2005)Google Scholar
  41. 41.
    A. Roychowdhury, S.P. Pati, A.K. Mishra, S. Kumar, D. Das, J. Phys. Chem. Solids 74, 811 (2013)ADSCrossRefGoogle Scholar
  42. 42.
    X. Bian, C. Huo, Y. Zhang, Q. Chen, Front. Mater. Sci. China 2, 31 (2008)ADSCrossRefGoogle Scholar
  43. 43.
    S.-H. Yi, S.-K. Choi, J.-M. Jang, J.-A. Kim, W.-G. Jung, J. Colloid Interface Sci. 313, 705 (2007)ADSCrossRefGoogle Scholar
  44. 44.
    X. Wang, Q. Zhang, Q. Wan, G. Dai, C. Zhou, B. Zou, J. Phys. Chem. C 115, 2769 (2011)CrossRefGoogle Scholar
  45. 45.
    V.J. Babu, S. Vempati, T. Uyar, S. Ramakrishna, Phys. Chem. Chem. Phys. 17, 2960 (2015)CrossRefGoogle Scholar
  46. 46.
    Y.-C. Liang, N.-C. Xu, C.-C. Wang, D.-H. Wei, Materials 10, 778 (2017)ADSCrossRefGoogle Scholar
  47. 47.
    Y. Xu, M.A.A. Schoonen, Am. Miner. 85, 543 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryAnnamalai UniversityAnnamalainagarIndia
  2. 2.CSIR Emeritus Scientist, Department of ChemistryAnnamalai UniversityAnnamalainagarIndia

Personalised recommendations