Applied Physics A

, 125:12 | Cite as

Highly conductive polyaniline/graphene nano-platelet composite sensor towards detection of toluene and benzene gases

  • Omar A. Al-Hartomy
  • Syed KhasimEmail author
  • Aashis Roy
  • Apsar Pasha


High-performance gas sensors operating at room temperature are in great demand towards monitoring the environmental hazardous pollutants such as toluene and benzene. In this work, we report synthesis of polyaniline–graphene nano-platelets (PANI–GRNPs) hybrid composites with varied content of GRNPs in PANI matrix by in situ chemical oxidative polymerization. Structural and morphological characterization of polymer nanocomposites were investigated through scanning electron microscopy (SEM) and Fourier transform infra-red spectroscopy (FTIR). SEM micrograph of polymer nanocomposite reveals uniform distribution of GRNPs in the PANI matrix. FTIR analysis of PANI–GRNPs composite revealed the presence π–π interaction between PANI and GRNPs leading to the formation of charge-transfer complex. The electrical properties of the prepared composites were tested as a function of GRNPs content in PANI matrix, the presence of GRNPs has significantly improved the conductivity and dielectric response of polymer nanocomposite in comparison to pure PANI. The sensor devices fabricated using PANI–GRNPs composite were tested for non-polar toluene and benzene vapors at ambient temperature using laboratory-made sensor setup. PANI–GRNPs composites used in the present investigation have shown enhanced sensitivity for toluene and benzene gases in comparison to pure PANI. Due to excellent sensitivity, faster response and recovery time, these PANI–GRNPs composites may find extensive technological applications as a conductometric sensor towards detection of toluene and benzene gases at lower concentrations.



This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under Grant no. J-88-130-38. The authors, therefore, acknowledge with thanks DSR for technical and financial support.


  1. 1.
    F. Zhang, X. Wang, J. Dong, N. Qin, J. Xu, Selective BTEX sensor based on a SnO2/V2O5 composite. Sens. Actuator B Chem. 131, 126 (2013)CrossRefGoogle Scholar
  2. 2.
    G.F. Fine, L.M. Cavanagh, A. Afonja, R. Binions, Metal oxide semi-conductor gas sensors in environmental monitoring. Sensors 10, 5469 (2010)CrossRefGoogle Scholar
  3. 3.
    H.F. Lu, F. Li, G. Liu, Z.G. Chen, D.W. Wang, H.T. Fang, G.Q. Lu, Z.H. Jiang, H.M. Cheng, Amorphous TiO2 nanotube arrays for low-temperature oxygen sensors. Nanotechnology 19, 405504 (2008)CrossRefGoogle Scholar
  4. 4.
    S. Kotresh, Y.T. Ravikiran, S.C. Vijaya Kumari, Ch.V.V. Ramana, K.M. Batoo, Solution based-spin cast processed LPG sensor at room temperature, Sens. Actuators A Phys. 263, 687 (2017)CrossRefGoogle Scholar
  5. 5.
    H. Bai, G. Shi, Gas sensors based on conducting polymers. Sensors 7, 267 (2007)CrossRefGoogle Scholar
  6. 6.
    S. Bai, Y. Zhao, J. Sun, Y. Tian, R. Luo, D. Li, A. Chen, Ultrasensitive room temperature NH3 sensor based on graphene–polyaniline hybrid loaded on PET thin film. Chem. Commun. 51, 7524 (2015)CrossRefGoogle Scholar
  7. 7.
    C. Murugan, E. Subramanian, D.P. Pandiyan, Enhanced sensor functionality of in situ synthesized polyaniline-SnO2 hybrids towards benzene and toluene vapors. Sens. Actuators B 205, 74 (2014)CrossRefGoogle Scholar
  8. 8.
    S. Kotresh; Y, T. Ravikiran, S.K. Tiwari, S.C. Vijaya Kumari, Polyaniline–cadmium ferrite nanostructured composite for room-temperature liquefied petroleum gas sensing. J. Electron. Mater. 46, 5240 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    R.S. Andre, F.M. Shimizu, C.M. Miyazaki, A. Riul Jr, D. Manzani, S.J.L. Ribeiro, O.N. Oliveria Jr., L.H.C. Mattoso, D.S. Corrrea, Hybrid layer-by-layer (LbL) film of polyaniline, graphene oxide and zinc oxide to detect ammonia. Sens. Actuators B 238, 795 (2017)CrossRefGoogle Scholar
  10. 10.
    E. Subramanian, P. Santhanamar, C. Murugan, Sensor functionality of conducting polyaniline-oxide (TiO2/SnO2) hybrid materials films toward benzene and toluene vapors at room temperature. J. Electron. Mater. 47, 4764 (2018)ADSCrossRefGoogle Scholar
  11. 11.
    P. Stamenov, R. Madathil, J.M.D. Coey, Dynamic response of ammonia sensors constructed from polyaniline nanofiber films with varying morphology. Sens. Actuators B Chem. 161, 989 (2012)CrossRefGoogle Scholar
  12. 12.
    T. Anwer, F. Mohammad, Thermal stability of electrical properties and amine vapour sensitivity of in-situ prepared polyaniline/graphene nanocomposites assisted by sodium dodecyl sulfate micelles. Polym. Polym. Compos. 23, 261 (2015)Google Scholar
  13. 13.
    M. Eising, C.E. Cava, R.V. Salvatierra, A.J.G. Zabrin, L.S. Roman, Doping effect on self-assembled films of polyaniline and carbon nanotube applied as ammonia gas sensor. Sens. Actuators B, 245, 25 (2017)CrossRefGoogle Scholar
  14. 14.
    Y. Zou, Q. Wang, C. Xiang, C. Tang, H. Chu, S. Qiu, E. Yan, F. Xu, L. Sun, Doping composite of polyaniline and reduced graphene oxide with palladium nanoparticles for room-temperature hydrogen-gas sensing. Int. J. Hydrog. Energy 41, 5396 (2016)CrossRefGoogle Scholar
  15. 15.
    C. Dhand, M. Das, M. Datta, B.D. Malhotra, Recent advances in polyaniline based biosensors. Biosens. Bioelectron. 26, 2811 (2011)CrossRefGoogle Scholar
  16. 16.
    F. Xu, S. Guo, Y.-L. Luo, Novel YHBT/MWNTs-OH polyurethane conducting composite thin films for applications in detection of volatile organic compounds. Mater. Chem. Phys. 145, 222 (2014)CrossRefGoogle Scholar
  17. 17.
    Z. Wu, X. Chen, S. Zhu, Z. Zhou, Y. Yao, W. Quan, B. Liu, Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite, Sens. Actuators B 178, 485 (2013)CrossRefGoogle Scholar
  18. 18.
    R.G. Bavane, M.D. Shrisat, A.M. Mahajan, Ammonia gas sensing characteristics of chemically synthesized polyaniline matrix. Sens. Transducers 113, 63 (2010)Google Scholar
  19. 19.
    O. Abdulrazzaq, S.E. Bourdo, V. Saini, V.G. Bairi, E. Dervishi, T. Viswanathan, Z.A. Nima, A.S. Biris, Optimization of the protonation level of polyaniline-based hole-transport layers in bulk-heterojunction organic solar cells. Energy Technol. 1, 463 (2013)CrossRefGoogle Scholar
  20. 20.
    G.A. Snook, P. Kao, A.S. Best, Conducting-polymer-based super capacitor devices and electrodes. J. Power Sour. 196, 1 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    E.S. Forzani, H.Q. Zhang, L.A. Nagahara, I. Amlani, R. Tsui, N.J. Tao, A conducting polymer nanojunction sensor for glucose detection. Nano Lett. 4, 1785 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    S. Ameen, M.S. Akhtar, M. Husain, A review on synthesis processing, chemical and conduction properties of polyaniline and its nanocomposites. Sci. Adv. Mater. 2, 441 (2010)CrossRefGoogle Scholar
  23. 23.
    F. Lux, Properties of electronically conductive polyaniline: a comparison between well-known literature data and some recent experimental findings. Polymer 35, 2915 (1994)CrossRefGoogle Scholar
  24. 24.
    N. Gospodinova, L. Terlemezyan, Conducting polymers prepared by oxidative polymerization: polyaniline. Prog. Polym. Sci. 23, 1443 (1998)CrossRefGoogle Scholar
  25. 25.
    W. Zheng, Y. Min, A.G. MacDiarmid, M. Angelopoulos, Y.H. Liao, A.J. Epstein, Effect of organic vapors on the molecular conformation of non-doped polyaniline. Synth. Met. 84, 63 (1997)CrossRefGoogle Scholar
  26. 26.
    S. Bhadra, D. Khastgir, N.K. Singha, J.H. Lee, Progress in preparation, processing and applications of polyaniline. Prog. Polym. Sci. 34, 783 (2009)CrossRefGoogle Scholar
  27. 27.
    M. Moussa, M.F. El-Kady, Z. Zhao, P. Majewski, J. Ma, Recent progress and performance evaluation for polyaniline/graphene nanocomposites as super capacitor electrodes. Nanotechnology 27, 442001 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    S.M. Imran, Y.N. Kim, G.N. Shao, M. Hussain, Y. Choa, H.T. Kim, Enhancement of electroconductivity of polyaniline/graphene oxide nanocomposites through in situ emulsion polymerization. J. Mater. Sci. 49, 1328 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    Y. Jafari, S.M. Ghoreishi, M. Shabani-Nooshabadi, Polyaniline/graphene nanocomposite coatings on copper: electropolymerization, characterization, and evaluation of corrosion protection performance. Synth. Met. 217, 220 (2016)CrossRefGoogle Scholar
  30. 30.
    R. Gupta, N. Vadodariya, A. Mahto, J.P. Chaudhary, D.B. Parmar, D.N. Srivastava, S.K. Nataraj, R. Meena, Functionalized seaweed derived graphene/polyaniline nanocomposite as efficient energy storage electrode. J. Appl. Electrochem. 48, 37 (2018)CrossRefGoogle Scholar
  31. 31.
    M. Dinari, M. Momeni, Mohsen, Goudarzirad, meysam, dye-sensitized solar cells based on nanocomposite of polyaniline/graphene quantum dots. J. Mater. Sci. 51, 2964 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    S.-J. Lin, H.-J. Sun, T.-J. Peng, L.-H. Jiang, Synthesis of high-performance polyaniline/graphene oxide nanocomposites. High Perform. Polym. 26, 790 (2014)CrossRefGoogle Scholar
  33. 33.
    X.S. Zhou, T.B. Wu, B.J. Hu, G.Y. Yang, B.X. Han, Synthesis of graphene/polyaniline composite nanosheets mediated by polymerized ionic liquid. Chem. Commun. 46, 3663 (2010)CrossRefGoogle Scholar
  34. 34.
    M. Parmar, C. Balamurugan, D.-W. Lee, PANI and graphene/PANI nanocomposite films-comparative toluene gas sensing behavior. Sensors 13, 16611 (2013)CrossRefGoogle Scholar
  35. 35.
    K.C. Sajjan, A.S. Roy, A. Parveen, S. Khasim, Analysis of DC and AC properties of a humidity sensor based on polyaniline–chromium oxide composites. J. Mater. Sci. Mater. Electron. 25, 1237 (2014)CrossRefGoogle Scholar
  36. 36.
    M. Faisal, S. Khasim, Broadband electromagnetic shielding and dielectric properties of polyaniline-stannous oxide composites. J. Mater. Sci. Mater. Electron. 24, 2202 (2013)CrossRefGoogle Scholar
  37. 37.
    M. Faisal, S. Khasim, E. Conductivity, Dielectric behavior and EMI shielding effectiveness of polyaniline-yttrium oxide composites. Bull. Korean Chem. Soc. 34, 99 (2013)CrossRefGoogle Scholar
  38. 38.
    H. Tai, Y. Jiang, G. Xie, J. Yu, X. Chen, Fabrication and gas sensitivity of polyaniline–titanium dioxide nanocomposite thin film. Sens. Actuators B 125, 644 (2007)CrossRefGoogle Scholar
  39. 39.
    L. Al-Mashat, K. Shin, K. Kalantar-zadeh, J.D. Plesis, S.H. Han, R.W. Kojima, R.B. Kaner, D. Li, X. Gou, S.J. Ippolito, W. Wlodarski, Graphene/polyaniline nanocomposite for hydrogen sensing. J. Phys. Chem. C 114, 16168 (2010)CrossRefGoogle Scholar
  40. 40.
    S. Khasim, O. Al-hartomy, Fabrication and gas sensitivity in hetero-structures of ortho-chloropolyaniline-ZnO nanocomposites. RSC Adv. 4, 39844 (2014)CrossRefGoogle Scholar
  41. 41.
    N. Badi, S. Khasim, A.S. Roy, Micro-Raman spectroscopy and effective conductivity studies of graphene nano-platelets/polyaniline composites. J. Mater. Sci. Mater. Electron. 27, 6249 (2016)CrossRefGoogle Scholar
  42. 42.
    M. Matsuguchi, I. Io, G. Sugiyama, Y. Sakai, Effect of NH3 gas on the electrical conductivity of polyaniline blend films. Synth. Met. 128, 15 (2002)CrossRefGoogle Scholar
  43. 43.
    L.T. Liu, X.Y. Ye, K. Wu, Z.Y. Zhou, D.J. Lee, T.H. Cui, Room temperature methane sensor based on graphene nanosheets/polyaniline nanocomposite thin film. IEEE Sens. J. 9, 1308 (2009)ADSCrossRefGoogle Scholar
  44. 44.
    D. Majumdar, M. Baskey, S.K. Saha, Epitaxial growth of crystalline polyaniline on reduced graphene oxide. Macromol. Rapid Commun. 32, 1277 (2011)CrossRefGoogle Scholar
  45. 45.
    Z. Wu, C. Xiangdong, S. Zhou, Y. Yao, W. Quan, B. Liu, Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite. Sens. Actuators B 178, 485 (2013)CrossRefGoogle Scholar
  46. 46.
    M. Parmar, K. Rajanna, Copper (II) oxide thin film for methanol and ethanol sensing. Int. J. Smart Sens. Intell. Syst. 4, 710 (2011)Google Scholar
  47. 47.
    B. Liu, H. Yang, H. Zhao, L. An, L. Zhang, R. Shi, L. Wang, L. Bao, Y. Chen, High toluene sensing properties of NiO–SnO2 composite nanofiber sensors operating at 330 °C. Sens. Actuator B Chem. 156, 251 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Omar A. Al-Hartomy
    • 1
  • Syed Khasim
    • 2
    • 3
    Email author
  • Aashis Roy
    • 4
  • Apsar Pasha
    • 5
  1. 1.Department of Physics, Faculty of ScienceKing Abdulaziz UniversityJeddahKingdom of Saudi Arabia
  2. 2.Department of Physics, Faculty of ScienceUniversity of TabukTabukKingdom of Saudi Arabia
  3. 3.Department of PhysicsPES University, Electronic City CampusBangaloreIndia
  4. 4.Industrial Chemistry DepartmentAddis Ababa Science and Technology UniversityAddis AbabaEthiopia
  5. 5.Department of PhysicsGousia College of EngineeringRamanagaramIndia

Personalised recommendations