Advertisement

Applied Physics A

, 125:20 | Cite as

Neural network implementation for the prediction of secondary phase precipitation and mechanical feature in a duplex stainless steel

  • Gabriele BaioccoEmail author
  • Nadia Ucciardello
Article
  • 63 Downloads

Abstract

Duplex stainless steels are extremely valuable materials in the manufacturing environment, featuring remarkable mechanical and physical characteristics. Anyway, the exploitation of this material often requires the creation of welded joints; this is a critical process for the duplex steel, entailing the precipitation of secondary phases. These precipitates undermine the peculiar features of the duplex steels and particularly toughness and corrosion resistance. For the design of welding processes or thermal cycles in general, literature presents several models aimed at the prediction of the sigma-phase precipitation furtherly to the precipitation diagram. In this paper, the presence of secondary phases within a duplex stainless steel 2205 microstructure thermally treated was evaluated with several techniques. At a later stage, an indentation test with a flat-ended cylinder was carried out, obtaining load-indentation depth curves that allow the evaluation of the yield stress. The data acquired during the experimental activities, which highlighted a correlation between secondary phases amount and yield stress, were used for the training of two artificial neural networks aimed at secondary phase amount and indentation curve prediction. The networks implemented are connected in series. The first network predicts the secondary phases’ amount with an error of the magnitude of 1% and can be used as starting point for the second network, while the accuracy in the indentation curve prediction allows a precise evaluation of the yield stress.

References

  1. 1.
    E. Capello, P. Chiarello, B. Previtali, M. Vedani, Laser welding and surface treatment of a 22Cr-5Ni-3Mo duplex stainless steel. Mater. Sci. Eng. A 351, 334–343 (2003)CrossRefGoogle Scholar
  2. 2.
    S. Botta, F. Masetti, S. Scanavino, Overview of the applications and problems associated with the use of austeno-ferritic steels and aluminium alloys in welded structures. Weld. Int. 23, 530–542 (2009)CrossRefGoogle Scholar
  3. 3.
    Z. Zhang, H. Jing, L. Xu, Y. Han, Z. Gao, L. Zhao, J. Zhang, Microstructural characterization and electron backscatter diffraction analysis across the welded interface of duplex stainless steel. Appl. Surf. Sci. 413, 327–343 (2017)CrossRefADSGoogle Scholar
  4. 4.
    M.L. Kwang, H.S. Cho, D.C. Choi, Effect of isothermal treatment of SAF 2205 duplex stainless steel on migration of δ/γ interface boundary and growth of austenite. J. Alloys Compd. 285, 156–161 (1999)CrossRefGoogle Scholar
  5. 5.
    N. Llorca-Isern, H. Lopez-Luque, I. Lopez-Jimenez, M.V. Biezma, Identification of sigma and chi phases in duplex stainless steels. Mater. Charact. 112, 20–29 (2016)CrossRefGoogle Scholar
  6. 6.
    M. Pohl, O. Storz, T. Glogowski, Effect of intermetallic precipitations on the properties of duplex stainless steel. Mater. Charact. 58, 65–71 (2007)CrossRefGoogle Scholar
  7. 7.
    F. Hengsbach, P. Koppa, K. Duschik, M. Joachim Holzweissig, M. Burns, J. Nellesen, W. Tillmann, T. Tröster, K.P. Hoyer, M. Schaper, Duplex stainless steel fabricated by selective laser melting-Microstructural and mechanical properties. Mater. Des. 133, 136–142 (2017)CrossRefGoogle Scholar
  8. 8.
    I. Calliari, M. Zanesco, E. Ramous, Influence of isothermal aging on secondary phases precipitation and toughness of a duplex stainless steel SAF 2205. J. Mater. Sci. 41, 7643–7649 (2006)CrossRefADSGoogle Scholar
  9. 9.
    S. Mburu, R. Prakash Kolli, D.E. Perea, S.C. Schwarm, A. Eaton, J. Liu, S. Patel, J. Bartrand, S. Ankem, Effect of aging temperature on phase decomposition and mechanical properties in cast duplex stainless. Mater. Sci. Eng. A 690, 365–377 (2017)CrossRefGoogle Scholar
  10. 10.
    T.H. Chen, K.L. Weng, J.R. Yang, The effect of high-temperature exposure on the microstructural stability and toughness property in a 2205 duplex stainless steel. Mater. Sci. Eng. A 338, 259–270 (2002)CrossRefGoogle Scholar
  11. 11.
    J. Verma, R.V. Taiwade, Effect of welding processes and conditions on the microstructure, mechanical properties and corrosion resistance of duplex stainless steel weldments-A review. J. Manuf. Process. 25, 134–152 (2017)CrossRefGoogle Scholar
  12. 12.
    M.R. El Koussy, I.S. El Mahallawi, W. Khalifa, M.M. Al Dawood, M. Bueckins, Effect of thermal aging on microstructure and mechanical properties of duplex stainless steel weldments. Mater. Sci. Technol. 20, 375–381 (2004)CrossRefGoogle Scholar
  13. 13.
    R. Badji, M. Bouabdallah, B. Bacroix, C. Kahloun, B. Belkessa, H. Maza, Phase transformation and mechanical behavior in annealed 2205 duplex stainless steel welds. Mater. Charact. 59, 447–453 (2008)CrossRefGoogle Scholar
  14. 14.
    J. Michalska, M. Sozańska, Qualitative and quantitative analysis of σ and χ phases in 2205 duplex stainless steel. Mater. Charact. 56, 355–362 (2006)CrossRefGoogle Scholar
  15. 15.
    J. Charles, Duplex stainless steels-a review after DSS ‘07 held in Grado. Rev. Metall. 105(3), 155–171 (2008)CrossRefGoogle Scholar
  16. 16.
    G. Filacchion, R. Montanari, M.E. Tata, L. Pilloni, Structural and mechanical properties of welded joints of reduced activation martensitic steels. J. Nucl. Mater. 311, 1563–1567 (2002)CrossRefADSGoogle Scholar
  17. 17.
    P. Ferro, A dissolution kinetics model and its application to duplex stainless steels. Acta Mater. 61, 3141–3147 (2013)CrossRefGoogle Scholar
  18. 18.
    P. Ferro, F. Bonollo, A Semiempirical model for sigma-phase precipitation in duplex and superduplex stainless steels. Metall. Mater. Trans. A 43, 1109–1116 (2012)CrossRefGoogle Scholar
  19. 19.
    D.Caluscio Dos Santos, R. Magnabosco, Kinetic study to predict sigma phase formation in duplex stainless steels. Metall. Mater. Trans. A 47, 1554–1565 (2016)CrossRefGoogle Scholar
  20. 20.
    N. Boaretto, T.M. Centeno, Automated detection of welding defects in pipelines from radiographic images DWDI. NDT E Int. 86, 7–13 (2017)CrossRefGoogle Scholar
  21. 21.
    I.E. Poletaev, K.S. Pervunin, M.P. Tokarev, Artificial neural network for bubbles pattern recognition on the images. J. Phys. Conf. Ser. 754, 072002 (2016)CrossRefGoogle Scholar
  22. 22.
    G.H. Roshani, E. Nazemi, M.M. Roshani, Intelligent recognition of gas-oil-water three-phase flow regime and determination of volume fraction using radial basis function. Flow Meas. Instrum. 54, 39–45 (2017)CrossRefGoogle Scholar
  23. 23.
    D. Lorente, N. Aleixos, J. Gómez-Sanchis, S. Cubero, O.L. García-Navarrete, J. Blasco, Recent advances and applications of hyperspectral imaging for fruit and vegetable quality assessment. Food Bioprocess Technol. 5, 1121–1142 (2012)CrossRefGoogle Scholar
  24. 24.
    C. Lucignano, R. Montanari, V. Tagliaferri, N. Ucciardello, Artificial neural networks to optimize the extrusion of an aluminium alloy. J Intell. Manuf. 21, 569–574 (2010)CrossRefGoogle Scholar
  25. 25.
    G. Costanza, M.E. Tata, N. Ucciardello, Superplasticity in PbSn60: experimental and neural network implementation. Comput. Mater. Sci. 37, 226–233 (2006)CrossRefGoogle Scholar
  26. 26.
    S. Missori, A. Sili, N. Ucciardello, Process parameters optimization of laser beam welded joints by neural network. Mater. Manuf. Processes 23, 169–174 (2008)CrossRefGoogle Scholar
  27. 27.
    A.J.A. Al-Jabar, M.A.A. Al-dujaili, I.A.D. Al-hydary, Prediction of the physical properties of barium titanates using an artificial neural network. Appl. Phys. A 123(4), 274 (2017)CrossRefADSGoogle Scholar
  28. 28.
    B. Riccardi, R. Montanari, L.F. Moreschi, A. Sili, S. Storai, Mechanical characterization of fusion materials by indentation test. Fusion Eng. Des. 58, 755–759 (2001)CrossRefGoogle Scholar
  29. 29.
    P. Gondi, R. Montanari, A. Sili, Small-scale nondestructive stress-strain and creep test feasible during irradiation. J. Nucl. Mater. 212–215, 1688–1692 (1994)CrossRefADSGoogle Scholar
  30. 30.
    L. Ciambella, R. Montanari, New algorithm to determine the yield stress from FIMEC test. Mater. Sci. Forum 783–786, 2272–2277 (2014)CrossRefGoogle Scholar
  31. 31.
    B. Riccardi, R. Montanari, Indentation of metals by flat-ended cylindrical punch. Mater. Sci. Eng. 381, 281–291 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria Industriale e dell’Informazione e di EconomiaUniversity of L’AquilaL’AquilaItaly
  2. 2.Dipartimento di Ingegneria dell’Impresa “Mario Lucertini”University of Rome Tor VergataRomeItaly

Personalised recommendations