Advertisement

Applied Physics A

, 125:63 | Cite as

Thickness-modulated temperature dependent optical properties of VO2 thin films

  • Zhipeng Kang
  • Min GaoEmail author
  • Chang Lu
  • Yuan LinEmail author
Rapid communication
  • 37 Downloads

Abstract

The optical properties of VO2 have a sharp change during metal–insulator transition, which indicates wide applications in manipulating electromagnetic waves. Here, VO2 thin films with different thicknesses were synthesized by polymer-assisted deposition. The transmittance change trend of the VO2 film with temperature is related with the thickness of the film, which is caused by a dramatic change of complex refractive index during phase transition. However, the transient reflectivity of 150-nm-thick VO2 films presented abnormal change trend with temperature compared with other thinner VO2 films, which may be related with the coexistence of multiphase VO2. The thickness dependent change trend of transmittance and transient reflectivity at specific light may open a new method to fabricate thickness periodic distribution metasurfaces by VO2 film and promote the applications of VO2 film as a metamaterial.

Notes

Acknowledgements

This work is supported by the National Basic Research Program of China (973 Program) under Grant No. 2015CB351905, the National Natural Science Foundation of China (Nos. 51872038 and 11329402) and “111” project (No. B13042).

Supplementary material

339_2018_2308_MOESM1_ESM.docx (387 kb)
Supplementary material 1 (DOCX 386 KB)

References

  1. 1.
    L.-H. Gao, Q. Cheng, J. Yang, S.-J. Ma, J. Zhao, S. Liu, H.-B. Chen, Q. He, W.-X. Jiang, H.-F. Ma, Q.-Y. Wen, L.-J. Liang, B.-B. Jin, W.-W. Liu, L. Zhou, J.-Q. Yao, P.-H. Wu, T.-J. Cui, Light: Sci. Appl. 4, e324 (2015)CrossRefGoogle Scholar
  2. 2.
    S. Liu, T.J. Cui, L. Zhang, Q. Xu, Q. Wang, X. Wan, J.Q. Gu, W.X. Tang, M.Q. Qi, J.G. Han, W.L. Zhang, X.Y. Zhou, Q. Cheng, Adv. Sci. 3, 12 (2016)Google Scholar
  3. 3.
    F.J. Morin, Phys. Rev. Lett. 3, 34 (1959)ADSCrossRefGoogle Scholar
  4. 4.
    M. Imada, A. Fujimori, Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    A.S. Barker, H.W. Verleur, H.J. Guggenheim, Phys. Rev. Lett. 17, 1286 (1966)ADSCrossRefGoogle Scholar
  6. 6.
    T.D. Manning, I.P. Parkin, J. Mater. Chem. 14, 2554 (2004)CrossRefGoogle Scholar
  7. 7.
    F. Guo, S. Chen, Z. Chen, H.J. Luo, Y.F. Gao, T. Przybilla, E. Spiecker, A. Osvet, K. Forberich, C.J. Brabec, Adv. Opt. Mater. 3, 1524 (2015)CrossRefGoogle Scholar
  8. 8.
    C. Lee, R. Atkins, W. Gibler, H.F. Taylor, Appl. Opt. 28, 4511 (1989)ADSCrossRefGoogle Scholar
  9. 9.
    M. Soltani, M. Chaker, E. Haddad, R. Kruzelecky, D. Nikanpour, J. Vac. Sci. Technolo. A Vac. Surf. Films 22, 859 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    A. Cavalleri, C. Tóth, C.W. Siders, J. Squier, F. Ráksi, P. Forget, J. Kieffer, Phys. Rev. Lett. 87, 237401 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    C. Chen, R. Wang, L. Shang, C. Guo, Appl. Phys. Lett. 93, 171101 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    H. Jerominek, F. Picard, D. Vincent, Optical Engineering-Bellingham-International, Soc. Opt. Eng. 32, 2092 (1993)ADSCrossRefGoogle Scholar
  13. 13.
    A. Bugayev, M. Gupta, Opt. Lett. 28, 1463 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    D. Xiao, K.W. Kim, J.M. Zavada, J. Appl. Phys. 97, 3 (2005)CrossRefGoogle Scholar
  15. 15.
    J. Rensberg, S. Zhang, Y. Zhou, A.S. McLeod, C. Schwarz, M. Goldflam, M. Liu, J. Kerbusch, R. Nawrodt, S. Ramanathan, D.N. Basov, F. Capasso, C. Ronning, M.A. Kats, Nano Lett. 16, 1050 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    W. Qi-Ye, Z. Huai-Wu, Y. Qing-Hui, C. Zhi, L. Yang, J. Yu-Lan, L. Yuan, Z. Pei-Xin, J. Phys. D Appl. Phys. 45, 235106 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    Y. Zhao, J. Hwan Lee, Y. Zhu, M. Nazari, C. Chen, H. Wang, A. Bernussi, M. Holtz, Z. Fan, J. Appl. Phys. 111, 053533 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    Z. Zhang, Y. Gao, Z. Chen, J. Du, C. Cao, L. Kang, H. Luo, Langmuir 26, 10738 (2010)CrossRefGoogle Scholar
  19. 19.
    L. Kang, Y. Gao, H. Luo, Z. Chen, J. Du, Z. Zhang, ACS Appl. Mater. Interfaces 3, 135 (2011)CrossRefGoogle Scholar
  20. 20.
    M. Eaton, A. Catellani, A. Calzolari, Opt. Express 26, 5342 (2018)ADSCrossRefGoogle Scholar
  21. 21.
    Q. Jia, T.M. McCleskey, A. Burrell, Y. Lin, G. Collis, H. Wang, A. Li, S. Foltyn, Nat. Mater. 3, 529 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    Y.D. Ji, T.S. Pan, Z. Bi, W.Z. Liang, Y. Zhang, H.Z. Zeng, Q.Y. Wen, H.W. Zhang, C.L. Chen, Q.X. Jia, Y. Lin, Appl. Phys. Lett. 101, 071902 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    M. Tazawa, P. Jin, S. Tanemura, Appl. Opt. 37, 1858 (1998)ADSCrossRefGoogle Scholar
  24. 24.
    D. Swinehart, J. Chem. Educ. 39, 333 (1962)CrossRefGoogle Scholar
  25. 25.
    G. Xu, P. Jin, M. Tazawa, K. Yoshimura, Jpn. J. Appl. Phys. 43, 186 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Electronic Thin films and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China

Personalised recommendations