Advertisement

Applied Physics A

, 125:10 | Cite as

Investigation of the effect of acid and base treatment of the photoanode on the photovoltaic parameters of Zn2SnO4-based DSSCs

  • Morteza Asemi
  • Behzad Mortezapour
  • Majid Ghanaatshoar
Article
  • 11 Downloads

Abstract

We have investigated the influence of acid and base treatment of the Zn2SnO4-based photoanode on the photovoltaic performance of dye-sensitized solar cells (DSSCs). The results clearly showed that the acid treatment not only could not improve the photovoltaic performance of the fabricated DSSCs but also remarkably decreased their open circuit voltage and short current density which may be attributed to the increase in the number of the surface traps. Conversely, NaOH-treatment of the photoanodes increased the power conversion efficiency of DSSCs by about 93% relative to the untreated photoanode. Electrochemical impedance spectroscopy confirmed that the base treatment reduces the charge recombination centers on the surface of the photoanode and then facilitates charge transport. Furthermore, the significant increase in the optical absorption of the NaOH-treated photoanode indicates that the base treatment apparently increases the amount of adsorbed dye molecules on the surface of the photoanodes which can be attributed to the increase in the basicity of the photoanode surface.

Notes

Acknowledgements

We gratefully acknowledge financial support from Iran National Science Foundation (INSF), under Grant number 95007269.

References

  1. 1.
    B. O’Regan, M. Grätzel, Nature 353, 737–740 (1991)ADSCrossRefGoogle Scholar
  2. 2.
    M. Asemi, M. Ahmadi, M. Ghanaatshoar, Ceram. Int. 44, 12862–12868 (2018)CrossRefGoogle Scholar
  3. 3.
    S. Liu, D. Liu, J. Liu, D. Wang, Y. Zhu, H. Li, N. Du, H. Xiao, X. Hao, J. Liu, Colloids Surf. A Physicochem. Eng. Asp. 547, 111–116 (2018)CrossRefGoogle Scholar
  4. 4.
    L. Liu, Y. Zhang, B. Zhang, Y. Fen, J.Mater. Sci. 52, 8070–8083 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F.E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, M. Grätzel, Nat. Chem. 6, 242–247 (2014)CrossRefGoogle Scholar
  6. 6.
    M. Asemi, M. Ghanaatshoar, Appl. Phys. A 122, 842–848 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    M. Shojaeifar, E. Mohajerani, M.R. Fathollahi, J. Appl. Phys. 123, 013102 (2018)ADSCrossRefGoogle Scholar
  8. 8.
    M. Abrari, M. Ghanaatshoar, S.S.H. Davarani, H.R. Moazami, I. Kazeminezhad, Appl. Phys. A 123, 326–335 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    M. Asemi, M. Ghanaatshoar, J. Mater. Sci.: Mater. Electron. 29, 6730–6740 (2018)Google Scholar
  10. 10.
    M. Asemi, M. Ghanaatshoar, Appl. Phys. A 122, 853–863 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    F. Xie, Y. Li, T. Xiao, D. Shen, M. Wei, Electrochim. Acta 261, 23–28 (2018)CrossRefGoogle Scholar
  12. 12.
    B. Tan, E. Toman, Y. Li, Y. Wu, J. Am. Chem. Soc. 129, 4162–4163 (2007)CrossRefGoogle Scholar
  13. 13.
    L.B. Li, Y.F. Wang, H.S. Rao, W.Q. Wu, K.N. Li, C.Y. Su, D.B. Kuang, ACS Appl. Mater. Interfaces. 5, 11865–11871 (2013)CrossRefGoogle Scholar
  14. 14.
    Z. Li, Y. Zhou, J. Zhang, W. Tu, Q. Liu, T. Yu, Z. Zou, Cryst. Growth Des. 12, 1476–1481 (2012)CrossRefGoogle Scholar
  15. 15.
    S.S. Shin, D.W. Kim, D. Hwang, J.H. Suk, L.S. Oh, B.S. Han, D.H. Kim, J.S. Kim, D. Kim, J.Y. Kim, K.S. Hong, Chemsuschem 7, 501–509 (2014)CrossRefGoogle Scholar
  16. 16.
    P. Balraju, M. Kumar, M.S. Roy, G.D. Sharm, Synth. Met. 159, 1325–1331 (2009)CrossRefGoogle Scholar
  17. 17.
    P.M. Sommeling, B.C. O’Regan, R.R. Haswell, H.J.P. Smit, N.J. Bakker, J.J.T. Smits, J.M. Kroon, J.A.M. van Roosmalen, J. Phys. Chem. B 110, 19191–19197 (2006)CrossRefGoogle Scholar
  18. 18.
    M. Shanmugam, M.F. Baroughi, D. Galipeau, Thin Solid Films 518, 2678–2682 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    L. Lu, R. Li, T. Peng, K. Fan, K. Dai, Renew. Energy 36, 3386–3393 (2011)CrossRefGoogle Scholar
  20. 20.
    L.Y. Lin, M.H. Yeh, C.Y. Chen, R. Vittal, C.G. Wu, K.C. Ho, J. Mater. Chem. A 2, 8281–8287 (2014)CrossRefGoogle Scholar
  21. 21.
    T. Liu, B. Wang, J. Xie, Q. Li, J. Zhang, M.I. Asghar, P.D. Lund, HaoWang, Appl. Surf. Sci. 355, 256–261 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    N.A. Allegrucci, A.J. Lewcenko, L. Mozer, P. Dennany, D.L. Wagner, K. Officer, S. Sunahara, L. Mori, Spiccia, Energy Environ. Sci. 2, 1069–1073 (2009)CrossRefGoogle Scholar
  23. 23.
    G.H. Guai, Q.L. Song, Z.S. Lu, C.M. Ng, C.M. Li, Renew. Energy 51, 29–35 (2013)CrossRefGoogle Scholar
  24. 24.
    C. Kim, J.T. Kim, H. Kim, S.H. Park, K.C. Son, Y.S. Han, Curr. Appl. Phys. 10, e176–e180 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    M. Asemi, M. Ghanaatshoar, J. Am. Ceram. Soc. 100, 5584–5592 (2017)CrossRefGoogle Scholar
  26. 26.
    R.K. Koninti, S. Palvai, S. Satpathi, S. Basua, P. Hazra, Nanoscale 8, 18436–18445 (2016)CrossRefGoogle Scholar
  27. 27.
    S. Lu, S.S. Sun, R. Genga, J. Gao, Thin Solid Films 589, 8–12 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    M. Asemi, M. Ghanaatshoar, Bull. Mater. Sci. 40, 1379–1388 (2017)CrossRefGoogle Scholar
  29. 29.
    S. Lee, J.Y. Kim, K.S. Hong, H.S. Jung, J.K. Lee, H. Shin, Sol. Energy Mater. Sol. Cells 90, 2405–2412 (2006)CrossRefGoogle Scholar
  30. 30.
    G.D. Sharma, P. Suresh, M.S. Roy, J.A. Mikroyannidis, J. Power Sources 195, 3011–3016 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    G. Mahmodi, S. Sharifnia, M. Madani, V. Vatanpour, Sol. Energy 97, 186–194 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    S. Zandi, P. Kameli, H. Salamati, H. Ahmadvand, M. Hakimi, Physica B Condens. Matter. 406, 3215–3218 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    R. Elleuch, R. Salhi, J.L. Deschanvres, P.G. Gucciardi, R. Maalej, J. Alloys Compd. 651, 756–763 (2015)CrossRefGoogle Scholar
  34. 34.
    S.K. Park, T.K. Yun, J.Y. Bae, Y.S. Won, Appl. Surf. Sci. 285P, 789–794 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    Z.S. Wang, M. Yanagida, K. Sayama, H. Sugihara, Chem. Mater. 18, 2912–2916 (2006)CrossRefGoogle Scholar
  36. 36.
    M. Asemi, M. Ghanaatshoar, J. Mater. Sci. 53, 7551–7561 (2018)ADSCrossRefGoogle Scholar
  37. 37.
    M. Asemi, A. Suddar, M. Ghanaatshoar, J. Mater. Sci. Mater. Electron. 28, 15233–15238 (2017)CrossRefGoogle Scholar
  38. 38.
    S. Parthiban, K.S. Anuratha, S. Arunprabaharan, S. Abinesh, N. Lakshminarasimhan, Ceram. Int. 41, 205–209 (2015)CrossRefGoogle Scholar
  39. 39.
    J. Xu, G. Wang, J. Fan, B. Liu, S. Cao, J. Yu, J. Power Sources 274, 77–84 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Morteza Asemi
    • 1
    • 2
  • Behzad Mortezapour
    • 1
    • 2
  • Majid Ghanaatshoar
    • 1
    • 2
  1. 1.Laser and Plasma Research InstituteShahid Beheshti UniversityTehranIran
  2. 2.Solar Cells Research GroupShahid Beheshti UniversityTehranIran

Personalised recommendations