Applied Physics A

, 124:871 | Cite as

Enhancement of thermoelectric performance of Cu2Se by K doping

  • Zheng Zhu
  • Yuewen Zhang
  • Hongzhang SongEmail author
  • Xin-Jian LiEmail author


Potassium-doped Cu2Se compounds were fabricated using a combined process of hydrothermal synthesis and hot-pressed sintering. The effects of potassium doping on the thermoelectric properties were studied. Compared with the K-free sample, the Seebeck coefficients and the resistivity of K-doped samples increase. This is due to the annihilation of the intrinsic holes with the external electrons introduced by K doping in Cu2Se, which eventually leads to the decrease of the hole concentration. Especially, some micro-pores are introduced by K doping, together with reduced carrier concentration that result in low thermal conductivity. Finally, for the nominal component Cu1.97K0.03Se (EPMA measured component Cu1.9891K0.0108Se), the peak value of ZT reaches 1.19 at 773 K, which is 47% larger than that of pure Cu2Se (ZTmax = 0.81).



This study was supported by the National Natural Science Foundation of China (Grant No. 61774136), the China and Henan Postdoctoral Science Foundation (Nos. 2017M620303 and 2018M630833), and the Key Programs for Science and Technology Development of Henan Province (Grant Nos. 182102210183 and 182102210594).


  1. 1.
    L.E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science. 321, 1457–1461 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    W.-D. Liu, Z.-G. Chen, J. Zou, Eco-friendly higher manganese silicide thermoelectric materials: progress and future challenges. Adv. Energy. Mater. 8, 1800056 (2018)CrossRefGoogle Scholar
  3. 3.
    R. Chetty, A. Bali, R.C. Mallik, Tetrahedrites as thermoelectric materials: an overview. J. Mater. Chem. C. 3, 12364–12378 (2015)CrossRefGoogle Scholar
  4. 4.
    Z.-G. Chen, G. Han, L. Yang, L. Cheng, J. Zou, Nanostructured thermoelectric materials: current research and future challenge. Prog. Nat. Sci. Mater. Int. 22, 535–549 (2012)CrossRefGoogle Scholar
  5. 5.
    L. Yang, Z.-G. Chen, M.S. Dargusch, J. Zou, High performance thermoelectric materials: progress and their applications. Adv. Energy. Mater. 8, 1701797 (2018)CrossRefGoogle Scholar
  6. 6.
    X. Zhang, L.-D. Zhao, Thermoelectric materials: Energy conversion between heat and electricity. J. Materiomics. 1, 92–105 (2015)CrossRefGoogle Scholar
  7. 7.
    H. Liu, X. Shi, F. Xu, L. Zhang, W. Zhang, L. Chen, Q. Li, C. Uher, T. Day, G.J. Snyder, Copper ion liquid-like thermoelectrics. Nat. Mater. 11, 422–425 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    B. Yu, W.S. Liu, S. Chen, H. Wang, H.Z. Wang, G. Chen, Z.F. Ren, Thermoelectric properties of copper selenide with ordered selenium layer and disordered copper layer. Nano. Energy. 1, 472–478 (2012)CrossRefGoogle Scholar
  9. 9.
    L. Yang, Z.G. Chen, G. Han, M. Hong, Y.C. Zou, J. Zou. High-performance thermoelectric Cu2Se nanoplates through nanostructure engineering. Nano. Energy. 16, 367–374 (2015)CrossRefGoogle Scholar
  10. 10.
    T.P. Bailey, S. Hui, H.Y. Xie, A. Olvera, P.F.P. Poudeu, X.F. Tang, C. Uher. Enhanced ZT and attempts to chemically stabilize Cu2Se via Sn doping. J. Mater. Chem. A 4, 17225–17235 (2016)CrossRefGoogle Scholar
  11. 11.
    F. Gao, S.L. Leng, Z. Zhu, X.J. Li, X. Hu, H.Z. Song, Preparation and thermoelectric properties of Cu2Se hot-pressed from hydrothermal synthesis nanopowders. J. Electron. Mater. 47, 2454–2460 (2018)ADSCrossRefGoogle Scholar
  12. 12.
    R. Cao, E. Li, Q. Hu, Z. Zhu, Y. Zhang, X. Li, X. Hu, H. Song, Enhanced thermoelectric properties of Cu2 − δSe nanopowder dispersed Bi2Ba2Co2Oy ceramics. Appl. Phys. A. 124, 669 (2018)ADSCrossRefGoogle Scholar
  13. 13.
    E.Y. Li, S.Q. Wang, Z. Zhu, R.J. Cao, X. Hu, H.Z. Song, Enhanced thermoelectric properties of Hg-doped Cu2Se. Int. J. Mod. Phys. B. 32, 1850087 (2018)ADSCrossRefGoogle Scholar
  14. 14.
    F. Gao, X. Du, F. Wu, X. Li, X. Hu, H. Song, Thermoelectric properties of Cu2Se/xNi0.85Se hot-pressed from hydrothermal synthesis nanopowders. Mod. Phy. Lett. B. 31, 1750093 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    L. Yang, Z.-G. Chen, G. Han, M. Hong, L. Huang, J. Zou. Te-doped Cu2Se nanoplates with a high average thermoelectric figure of merit. J. Mater. Chem. A. 4, 9213–9219 (2016)CrossRefGoogle Scholar
  16. 16.
    H. Liu, X. Yuan, P. Lu, X. Shi, F. Xu, Y. He, Y. Tang, S. Bai, W. Zhang, L. Chen, Y. Lin, L. Shi, H. Lin, X. Gao, X. Zhang, H. Chi, C. Uher. Ultrahigh thermoelectric performance by electron and phonon critical scattering in Cu2Se1 − xIx. Adv. Mater. 25, 6607–6612 (2013)CrossRefGoogle Scholar
  17. 17.
    L. Yang, Z.-G. Chen, G. Han, M. Hong, J. Zou, Impacts of Cu deficiency on the thermoelectric properties of Cu2 – XSe nanoplates. Acta. Mater. 113, 140–146 (2016)CrossRefGoogle Scholar
  18. 18.
    S.D. Kang, J.-H. Pöhls, U. Aydemir, P. Qiu, C.C. Stoumpos, R. Hanus, M.A. White, X. Shi, L. Chen, M.G. Kanatzidis, G.J. Snyder. Enhanced stability and thermoelectric figure-of-merit in copper selenide by lithium doping. Mater. Today. Phys. 1, 7–13 (2017)CrossRefGoogle Scholar
  19. 19.
    Y. Jin, M.-K. Han, S.-J. Kim, Na-doping effects on thermoelectric properties of Cu2 – xSe nanoplates. Appl. Sci. 8, 12 (2018)CrossRefGoogle Scholar
  20. 20.
    Z. Zhu, Y. Zhang, H. Song, X. Li, Enhancement of thermoelectric performance of Cu1.98Se by Pb-doping. Appl. Phys. A. 124, 747 (2018)ADSCrossRefGoogle Scholar
  21. 21.
    Z. Zhu, Y.W. Zhang, H.Z. Song, X.J. Li, Enhancement of thermoelectric property of Cu1.98Se by Na doping. J. Electron. Mater. 47, 7514–7519 (2018)ADSCrossRefGoogle Scholar
  22. 22.
    F. Gao, Q. He, R. Cao, F. Wu, X. Hu, H. Song, Enhanced thermoelectric properties of the hole-doped Bi2 – xKxSr2Co2Oy ceramics. Int. J. Mod. Phys. B. 29, 1550192 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    Q.L. He, S.Y. Li, F. Gao, Z. Zhu, X. Hu, H.Z. Song, High temperature thermoelectric properties of Bi2 – xNaxSr2Co2Oy ceramics. Mod. Phys. Lett. B. 29, 1550159 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    Y.B. Zhu, B.P. Zhang, Y. Liu, Enhancing thermoelectric performance of Cu2Se by doping Te. Phys. Chem. Chem. Phys. 19, 27664 (2017)CrossRefGoogle Scholar
  25. 25.
    K. Zhao, H. Duan, N. Raghavendra, P. Qiu, Y. Zeng, W. Zhang, J. Yang, X. Shi, L. Chen, Solid-state explosive reaction for nanoporous bulk thermoelectric materials. Adv. Mater. 29, 1701148 (2017)CrossRefGoogle Scholar
  26. 26.
    D.R. Brown, T. Day, K.A. Borup, S. Christensen, B.B. Iversen, G.J. Snyder, Phase transition enhanced thermoelectric figure-of-merit in copper chalcogenides. Appl. Mater. 1, 052107 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    E. Eikeland, A.B. Blichfeld, K.A. Borup, K. Zhao, J. Overgaard, X. Shi, L. Chen, B.B. Iversen, Crystal structure across the beta to alpha phase transition in thermoelectric Cu2 – xSe. IUCrJ. 4, 476–485 (2017)CrossRefGoogle Scholar
  28. 28.
    B. Gahtori, S. Bathula, K. Tyagi, M. Jayasimhadri, A.K. Srivastava, S. Singh, R.C. Budhani, A. Dhar, Giant enhancement in thermoelectric performance of copper selenide by incorporation of different nanoscale dimensional defect features. Nano. Energy. 13, 36–46 (2015)CrossRefGoogle Scholar
  29. 29.
    L.L. Zhao, X.L. Wang, J.Y. Wang, Z.X. Cheng, S.X. Dou, J. Wang, L.Q. Liu, Superior intrinsic thermoelectric performance with ZT of 1.8 in single-crystal and melt-quenched highly dense Cu2 – xSe bulks. Sci. Rep. 5, 7671 (2015)CrossRefGoogle Scholar
  30. 30.
    Z.H. Ge, X.Y. Liu, D. Feng, J.Y. Lin, J.Q. He, High-performance thermoelectricity in nanostructured earth-abundant copper sulfides bulk materials. Adv. Energy. Mater. 6, 1600607 (2016)CrossRefGoogle Scholar
  31. 31.
    M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.P. Fleurial, P. Gogna, New directions for low-dimensional thermoelectric materials. Adv. Mater. 19, 1043–1053 (2007)CrossRefGoogle Scholar
  32. 32.
    L.D. Zhao, V.P. Dravid, M.G. Kanatzidis, The panoscopic approach to high performance thermoelectrics. Energy. Environ. Sci. 7, 251–268 (2014)CrossRefGoogle Scholar
  33. 33.
    G.A. Slack, The thermal conductivity of nonmetallic crystals. Solid. State. Phys. 34, 1–71, (1979) (Elsevier)CrossRefGoogle Scholar
  34. 34.
    M.R. Stinson, Y. Champoux, Propagation of sound and the assignment of shape factors in model porous materials having simple pore geometries. J. Acoust. Soc. Am. 91, 685–695 (1992)ADSCrossRefGoogle Scholar
  35. 35.
    L. Yao, F. Wu, X.X. Wang, R.J. Cao, X.J. Li, X. Hu, H.Z. Song. Effects of thallium doping on the transport properties of Bi2Te3 alloy. J. Electron. Mater. 45, 3053–3058 (2016)ADSCrossRefGoogle Scholar
  36. 36.
    R. Cao, H. Song, W. Gao, E. Li, X. Li, X. Hu, Thermoelectric properties of Lu-doped n-type Lux Bi2 – xTe2.7Se0.3 alloys. J. Alloys. Compd. 727, 326–331 (2017)CrossRefGoogle Scholar
  37. 37.
    F. Wu, Q. He, M. Tang, H. Song, Thermoelectric properties of Tl and I dual-doped Bi2Te3-based alloys. Int. J. Mod. Phys. B. 32, 1850123 (2018)ADSCrossRefGoogle Scholar
  38. 38.
    Q. Hu, Z. Zhu, Y. Zhang, X. Li, H. Song, Y. Zhang, Remarkably high thermoelectric performance of Cu2 – xLixSe bulks with nanopores. J. Mater. Chem. A. 6, 23417–23424 (2018)CrossRefGoogle Scholar
  39. 39.
    P. Peng, Z.N. Gong, F.S. Liu, M.J. Huang, W.Q. Ao, Y. Li, J.Q. Li, Structure and thermoelectric performance of β-Cu2Se doped with Fe, Ni, Mn, In, Zn or Sm. Intermetallics. 75, 72–78 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Material Physics of Ministry of Education, School of Physics and EngineeringZhengzhou UniversityZhengzhouChina

Personalised recommendations