Applied Physics A

, 125:9 | Cite as

Temperature vs. impedance dependencies of neutron-irradiated nanocrystalline silicon carbide (3C-SiC)

  • Elchin HuseynovEmail author
  • Anze Jazbec
  • Luka Snoj


At the present work, impedance spectroscopy of nanocrystalline silicon carbide (3C-SiC) has been investigated as a function of temperature. Nanocrystalline 3C-SiC particles irradiated by neutrons (2 × 1013 n cm− 2s− 1) up to 20 h. Impedance of neutron-irradiated nanocrystalline 3C-SiC has been studied at the temperature range of 100–400 K. Impedance spectra of the nanocrystal have been comparatively studied before and after neutron irradiation. The natures of conductivity and the metal—semiconductor transition temperature (TMS = 250 K, 325 K, and 370 K at the various frequencies) have been defined from the complex impedance spectroscopy. Polarization of nanocrystalline 3C-SiC increased corresponding to neutron irradiation duration. The mechanism of all effects observed in the experiments has been given in the work.



This work was supported by the Science Development Foundation under the President of the Republic of Azerbaijan—Grant No. EİF/GAM-4-BGM-GİN-2017-3(29)-19/01/1. I gratefully acknowledge the assistance of my colleagues from the Institute of Radiation Problems of the Azerbaijan National Academy of Sciences, the National Nuclear Research Center (NNRC) and “Reactor Infrastructure Centre (RIC)” and “Condensed Matter Physics Department” at IJS. I would like to thank Prof. Dr. Borut Smodis for providing irradiated samples in TRIGA Mark II type research reactor and Prof. Dr. Vid Bobnar and Aleksander Matavž for encouraging discussions.


  1. 1.
    Ł Rogal, D. Kalita, A. Tarasek, P. Bobrowski, F. Czerwinski, Effect of SiC nano-particles on microstructure and mechanical properties of the CoCrFeMnNi high entropy alloy. J. Alloy. Compd. 708, 344–352, (2017)CrossRefGoogle Scholar
  2. 2.
    G. Singh, T. Koyanagi, C. Petrie, K. Terrani, Y. Katoh, Evaluating the irradiation effects on the elastic properties of miniature monolithic SiC tubular specimens. J. Nucl. Mater. 499, 107–110 (2018)ADSCrossRefGoogle Scholar
  3. 3.
    F. Cancino-Trejo, E. López-Honorato, R.C. Walker, R.S. Ferrer, Grain-boundary type and distribution in silicon carbide coatings and wafers. J. Nucl. Mater. 500, 176–183 (2018)ADSCrossRefGoogle Scholar
  4. 4.
    B. Yoon, S.-H. Lee, Lee HS, Low-temperature densification of nano Si-C powder containing Al-C additives prepared by high-energy ball-milling. Ceram. Int. 43(1), 12–19 (2017)CrossRefGoogle Scholar
  5. 5.
    K. Ning, K. Lu, K. Bawane, Z. Hu, Spark plasma sintering of silicon carbide (SiC)-nanostructured ferritic alloy (NFA) composites with carbon barrier layer”. J. Nucl. Mater. 498, 50–59 (2018)ADSCrossRefGoogle Scholar
  6. 6.
    J. Sánchez-González, A.L. Ortiz, F. Guiberteau, G. Pascual, Complex impedance spectroscopy study of a liquid-phase-sintered α-SiC ceramic. J. Eur. Ceram. Soc. 27(13–15), 3935–3939 (2007)CrossRefGoogle Scholar
  7. 7.
    I. Vivaldo, M. Moreno, A. Torres et al., A comparative study of amorphous silicon carbide and silicon rich oxide for light emission applications. J. Lumin. 190, 215–220 (2017)CrossRefGoogle Scholar
  8. 8.
    B.N. Pushpakaran, A.S. Subburaj, S.B. Bayne, Impact of silicon carbide semiconductor technology in Photovoltaic Energy System. Renew. Sustain. Energy Rev. 55, 971–989 (2016)CrossRefGoogle Scholar
  9. 9.
    M. Perani, D. Cavalcoli, M. Canino et al., Electrical properties of silicon carbide/silicon rich carbide multilayers for photovoltaic applications. Sol. Energy Mater. Sol. Cells 135, 29–34 (2015)CrossRefGoogle Scholar
  10. 10.
    R.W. Flammang, J.G. Seidel, F.H. Ruddy (2007) Fast neutron detection with silicon carbide semiconductor radiation detectors. Nuclear Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 579, 1, 177–179ADSCrossRefGoogle Scholar
  11. 11.
    S. Sato, K. Yamabe, T. Endoh, M. Niwa, Formation mechanism of concave by dielectric breakdown on silicon carbide metal-oxide-semiconductor capacitor. Microelectron. Reliab. 58, 185–191 (2016)CrossRefGoogle Scholar
  12. 12.
    M. Hodgson, A. Lohstroh, P. Sellin, Alpha radiation induced space charge stability effects in semi-insulating silicon carbide semiconductors compared to diamond. Diam. Relat. Mater. 78, 49–57 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    F.H. Ruddy, J.G. Seidel, The effects of intense gamma-irradiation on the alpha-particle response of silicon carbide semiconductor radiation detectors. Nucl. Instrum. Methods Phys. Res., Sect. B 263(1), 163–168 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    F.H. Ruddy, A.R. Dulloo, J.G. Seidel et al., The charged particle response of silicon carbide semiconductor radiation detectors. Nuclear Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 505(1–2), 159–162 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    M. Camarda, Monte Carlo study of the hetero-polytypical growth of cubic on hexagonal silicon carbide polytypes. Surf. Sci. 606, 15–16, 1263–1267 (2012)CrossRefGoogle Scholar
  16. 16.
    M. Kildemo, Optical properties of silicon carbide polytypes below and around bandgap”. Thin Solid Films 455–456, 187–195 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    N.G. Szwacki, Structural and electronic properties of silicon carbide polytypes as predicted by exact exchange calculations. Comput. Condens. Matter 13, 55–58 (2017)CrossRefGoogle Scholar
  18. 18.
    F. Mercier, S. Nishizawa, Role of surface effects on silicon carbide polytype stability. J. Cryst. Growth 360, 189–192, (2012)ADSCrossRefGoogle Scholar
  19. 19.
    E. Huseynov, A. Jazbec, Trace elements study of high purity nanocrystalline silicon carbide (3C-SiC) using k0-INAA method. Phys. B 517, 30–34 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    E.M. Huseynov, Investigation of the agglomeration and amorphous transformation effects of neutron irradiation on the nanocrystalline silicon carbide (3C-SiC) using TEM and SEM methods. Phys. B 510, 99–103 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    E.M. Huseynov, Neutron irradiation, amorphous transformation and agglomeration effects on the permittivity of nanocrystalline silicon carbide (3C-SiC). NANO 13, 1830002 (2018)CrossRefGoogle Scholar
  22. 22.
    E. Huseynov, Electrical impedance spectroscopy of neutron-irradiated nanocrystalline silicon carbide (3C-SiC). Appl. Phys. A 124, 19 (2018)ADSCrossRefGoogle Scholar
  23. 23.
    E.M. Huseynov, Permittivity-frequency dependencies study of neutron-irradiated nanocrystalline silicon carbide (3C-SiC). NANO 12(6), 1750068 (2017)MathSciNetCrossRefGoogle Scholar
  24. 24.
    E.M. Huseynov, Neutron irradiation effects on the temperature dependencies of electrical conductivity of silicon carbide (3C-SiC) nanoparticles. Silicon 10/3, 995–1001 (2018)CrossRefGoogle Scholar
  25. 25.
    E.M. Huseynov, Dielectric loss of neutron-irradiated nanocrystalline silicon carbide (3C-SiC) as a function of frequency and temperature. Solid State Sci. 84, 44–50 (2018)ADSCrossRefGoogle Scholar
  26. 26.
    E. Huseynov, Neutron irradiation and frequency effects on the electrical conductivity of nanocrystalline silicon carbide (3C-SiC). Phys. Lett. A 380/38, 3086–3091 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    P. Szroeder, N.G. Tsierkezos, M. Walczyk et al., “Insights into electrocatalytic activity of epitaxial graphene on SiC from cyclic voltammetry and ac impedance spectroscopy”. J. Solid State Electrochem. 18, 2555–2562 (2014)CrossRefGoogle Scholar
  28. 28.
    X. Wang, P. Xiao, Nondestructive characterisation of alumina/silicon carbide nanocomposites using impedance spectroscopy”. J. Eur. Ceram. Soc. 20, 2591–2599 (2000)CrossRefGoogle Scholar
  29. 29.
    S. Khadhraoui, A. Triki, S. Hcini, S. Zemni, M. Oumezzine, “Structural and impedance spectroscopy properties of Pr0.6Sr0.4Mn1xTixO3 ± d perovskites”. J. Alloy. Compd. 574, 290–298 (2013)CrossRefGoogle Scholar
  30. 30.
    D. Tlili, N. Hamdaoui, S. Hcini, M.L. Bouazizi, S. Zemni, Above room temperature complex impedance analysis of properties of La0.33Sr0.67Mn0.33Ti0.67O3 ± δ perovskite. Phase Transit. Multinatl. J. 90(6), 1–9 (2017)Google Scholar
  31. 31.
    E. Oumezzine, S. Hcini, F.I.H. Rhouma, M. Oumezzine, Frequency and temperature dependence of conductance, impedance and electrical modulus studies of Ni0.6Cu0.4Fe2O4 spinel ferrite. J. Alloy. Compd. 726, 187–194 (2017)CrossRefGoogle Scholar
  32. 32.
    L. Snoj, G. Zerovnik, A. Trkov, Computational analysis of irradiation facilities at the JSI TRIGA reactor. Appl. Radiat. Isot. 70, 483–488 (2012)CrossRefGoogle Scholar
  33. 33.
    P. Filliatre, C. Jammes, L. Barbot, D. Fourmentel, B. Geslot, I. Lengar, A. Jazbec, L. Snoj, G. Z̆erovnik, Experimental assessment of the kinetic parameters of the JSI TRIGA reactor. Ann. Nucl. Energy 83, 236–245 (2015)CrossRefGoogle Scholar
  34. 34.
    T. Goričanec, G. Žerovnik, L. Barbot, D. Fourmentel, C. Destouches, A. Jazbec, L. Snoj, Evaluation of neutron flux and fission rate distributions inside the JSI TRIGA Mark II reactor using multiple in-core fission chambers. Ann. Nucl. Energy 111, 407–440, 2018 (2018)CrossRefGoogle Scholar
  35. 35.
    R. Henry, I. Tiselj, L. Snoj, Analysis of JSI TRIGA MARK II reactor physical parameters calculated with TRIPOLI and MCNP. Appl. Radiat. Isot. 97, 140–148 (2015)CrossRefGoogle Scholar
  36. 36.
    A. Eršte, A. Kupec, B. Kmet, B. Malič, V. Bobnar, Stable dielectric response in lead-free relaxor K0.5Na0.5NbO3–SrTiO3 thin films. J. Adv. Dielectrics 04, 1450012 (2014)CrossRefGoogle Scholar
  37. 37.
    C. Erste, A. Filipic, V. Levstik, X.Z. Bobnar, C.L. Chen, Q.D. Jia, Shen, Contributions of distinctive dynamic processes to dielectric response of a relaxorlike reduced poly(vinylidene fluoride-trifluoroethylene) copolymer. Phys. Rev. B 81, 214103 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    L.L. Snead, Limits on irradiation-induced thermal conductivity and electrical resistivity in silicon carbide materials. J. Nucl. Mater. 329–333, 524–529 (2004)ADSCrossRefGoogle Scholar
  39. 39.
    L.L. Snead, T. Nozawa, Y. Katoh, T.S. Byun, S. Kondo, D.A. Petti, Handbook of SiC properties for fuel performance modeling. J. Nucl. Mater. 371, 329–377 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Radiation ProblemsAzerbaijan National Academy of SciencesBakuAzerbaijan
  2. 2.Reactor Physics DepartmentJozef Stefan InstituteLjubljanaSlovenia
  3. 3.Department of Nanotechnology and Radiation Material ScienceNational Nuclear Research CenterBakuAzerbaijan

Personalised recommendations