Applied Physics A

, 125:2 | Cite as

Organic WORM memory with carbon nanoparticle/epoxy active layer

  • Andressa Toppel
  • Celso de Araujo DuarteEmail author
  • Messai Adenew Mamo


Following the “All With One (AW1)” technology proposed in our earlier work, the present study is focused on the production and the characterization of write once read many (WORM) memory devices with a carbon nanoparticle/epoxy resin nanocomposite, where the main advantage stands on the ease of production of the nanostructured phase. The results revealed that short 100-ns, low-voltage (5.0-V) electric pulses are enough to record a bit, and the bit one to bit zero current state ratio \(I_\mathrm{{ON}}/I_\mathrm{{OFF}}\) reaches 10\(^{7}\).



The authors thank Prof. Dr. I. A. Hümmelgen (Dept. of Physics, UFPR) for the use of laboratory facilities. We thank CAPES (Brazilian agency) for funding and CME—Centro de Microscopia Eletrônica da UFPR for the transmission electron microscopy and Raman scattering measurements.


  1. 1.
    I. Hattenhauer, F.A.D. Radomski, C.A. Duarte, M.A. Mamo, Epoxy resin in organic WORM memories: From capsuling to the active layer. Org. Electron. 34, 57–66 (2016)CrossRefGoogle Scholar
  2. 2.
    M.A. Mamo, W.S. Machado, W.A.L.V. Otterlo, N.J. Coville, I.A. Hümmelgen, Simple write-once-read-many-times memory device based on a carbon sphere-poly(vinylphenol) composite. Org. Electron. 11, 1858–1863 (2010)CrossRefGoogle Scholar
  3. 3.
    W.S. Machado, M.A. Mamo, N.J. Coville, I.A. Hümmelgen, The OFF to ON switching time and ON state consolidation in write-once-read-many-times memory devices based on doped and undoped carbon-sphere/polymer composites. Thin Solid Films 520, 4427–4431 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    B. Pradhan, S.K. Batabyal, A.J. Pal, Electrical bistability and memory phenomenon in carbon nanotube-conjugated polymer matrixes. J. Phys. Chem. B 110, 8274–8277 (2006)CrossRefGoogle Scholar
  5. 5.
    Q. Zhang, J. Pan, X. Yi, L. Li, S. Shang, Nonvolatile memory devices based on electrical conductance tuning in poly(N-vinylcarbazole)-graphene composites. Org. Electron. 13, 1289–1295 (2012)CrossRefGoogle Scholar
  6. 6.
    J.A. Ávila-Niño, W.S. Machado, A.O. Sustaita, E.S. Cardenas, M. Reyes-Reyes, R.L. Sandoval, I.A. Hümmelgen, Organic low voltage rewritable memory device based on PEDOT: PSS/f-MWCNTs thin film. Org. Electron. 13, 2582–2588 (2012)CrossRefGoogle Scholar
  7. 7.
    M.A. Mamo, A.O. Sustaita, Z.N. Tetana, N.J. Coville, I.A. Hümmelgen, Nitrogen-doped, boron-doped and undoped multiwalled carbon nanotube/polymer composites in WORM memory devices. Nanotechnology 24, 1–7 (2013)CrossRefGoogle Scholar
  8. 8.
    G. Liu, Q.D. Ling, E.T. Kang, K.G. Neoh, D.J. Liaw, F.C. Chang, C.X. Zhu, D.S.H. Chan, Bistable electrical switching and write-once read-many-times memory effect in a donor-acceptor containing polyfluorene derivative and its carbon nanotube composites. J. Appl. Phys. 102, 024502 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    C. Wu, F. Li, T. Guo, T.W. Kim, Controlling memory effects of three-layer structured hybrid bistable devices based on graphene sheets sandwiched between two laminated polymer layers. Org. Electron. 13, 178–183 (2012)CrossRefGoogle Scholar
  10. 10.
    B. Zhang, D. Li, Y. Wu, F. Fan, Y. Chen, A donor-acceptor structured conjugated copolymer for flexible memory device. Org. Electron. 49, 269–277 (2017)CrossRefGoogle Scholar
  11. 11.
    R. Shi, X. Wang, Z. Wang, L. Cao, M. Song, X. Huang, J. Liu, and W. Huang, Fully solution-processed transparent nonvolatile and volatile multifunctional memory devices from conductive polymer and graphene oxide. Adv. Electr. Mat. 3, 170013 (2017)Google Scholar
  12. 12.
    D. Chaudhary, S. Munjal, N. Khare, V.D. Vankar, Bipolar resistive switching and nonvolatile memory effect in poly (3-hexylthiophene) carbon nanotube composite films. Carbon 130, 553–558 (2018)CrossRefGoogle Scholar
  13. 13.
    Y. Sun, D. Wena, X. Baib, Nonvolatile ternary resistive switching memory devices based on the polymer composites containing zinc oxide nanoparticles. Phys. Chem. Chem. Phys. 20, 5771–5579 (2018)CrossRefGoogle Scholar
  14. 14.
    N. Padma, C.A. Betty, S. Samanta, A. Nigam, Tunable switching characteristics of low operating voltage organic bistable memory devices based on gold nanoparticles and copper phthalocyanine thin films. J. Phys. Chem. C 121, 5768–5778 (2017)CrossRefGoogle Scholar
  15. 15.
    J. Sandler, M.S.P. Shaffer, T. Prasse, W. Bauhofer, K. Schulte, A.H. Windle, Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer 40, 5967–5971 (1999)CrossRefGoogle Scholar
  16. 16.
    X.-L. Xie, Y.-W. Mai, X.-P. Zhou, Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater. Sci. Eng. R Rep. 49, 89–112 (2005)CrossRefGoogle Scholar
  17. 17.
    Q. Wang, J. Dai, W. Li, Z. Wei, J. Jiang, The effects of CNT alignment on electrical conductivity and mechanical properties of SWNT/epoxy nanocomposites. Compos. Sci. Technol. 68, 1644–1648 (2008)CrossRefGoogle Scholar
  18. 18.
    J. Gao, D. Yan, B. Yuan, H. Huang, Z. Li, Large-scale fabrication and electrical properties of an anisotropic conductive polymer composite utilizing preferable location of carbon nanotubes in a polymer blend. Compos. Sci. Technol. 70, 1973–1979 (2010)CrossRefGoogle Scholar
  19. 19.
    T. Kim, A. Tannenbaum, R. Tannenbaum, Anisotropic conductivity of magnetic carbon nanotubes embedded in epoxy matrices. Carbon 70, 54–61 (2011)CrossRefGoogle Scholar
  20. 20.
    B.W. Steinert, D.R. Dean, Magnetic field alignment and electrical properties of solution cast PET carbon nanotube composite films. Polymer 50, 898–904 (2009)CrossRefGoogle Scholar
  21. 21.
    I. Hattenhauer, P.P. Tambosi, C.A. Duarte, L.A.F. Coelho, A. Ramos, S.H. Pezzin, Impact of electric field application during curing on epoxy-carbon nanotube nanocomposite electrical conductivity. J. Inorg. Organomet. Polym. Mater. 25, 627–634 (2014)CrossRefGoogle Scholar
  22. 22.
    Y.Z. Jin, C. Gao, W.K. Hsu, Y. Zhu, A. Huczko, M. Bystrzejewski, M. Roe, C.Y. Lee, S. Acquah, H. Kroto, D.R.M. Walton, Large-scale synthesis and characterization of carbon spheres prepared by direct pyrolysis of hydrocarbons. Carbon N. Y. 43, 1944–1953 (2005)CrossRefGoogle Scholar
  23. 23.
    H. Cao, J. Fu, Y. Liu, S. Chen, Facile design of superhydrophobic and superoleophilic copper mesh assisted by candle soot for oil water separation. Colloids Surf. A 537, 294–302 (2018)CrossRefGoogle Scholar
  24. 24.
    X. Deng, L. Mammen, H.J. Butt, D. Vollmer, Candle Soot as a template for a transparent robust superamphiphobic coating. Science 335, 67 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    C.-J. Liang, J.-D. Liao, A.-J. Li, C. Chen, H.-Y. Lin, X.-J. Wang, Y.-H. Xu, Relationship between wettabilities and chemical compositions of candle soots. Fuel 128, 422 (2014)CrossRefGoogle Scholar
  26. 26.
    L. Shen, W. Wang, H. Ding, Q. Guo, Flame soot stably deposited on silicone coatings possess superhydrophobic surface. Appl. Surf. Sci. 284, 651 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    K. Seo, M. Kim, D.H. Kim, Candle-based process for creating a stable superhydrophobic surface. Carbon 68, 583 (2014)CrossRefGoogle Scholar
  28. 28.
    K.S. Prasad, M.C. Chuang, J.A.A. Ho, Synthesis, characterization, and electrochemical applications of carbon nanoparticles derived from castor oil soot. Talanta 88, 445 (2012)CrossRefGoogle Scholar
  29. 29.
    B. Zhang, D. Wang, B. Yu, F. Zhou, W. Liu, Candle soot as a supercapacitor electrode material. RSC Adv. 4, 2586 (2014)CrossRefGoogle Scholar
  30. 30.
    L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Raman spectroscopy in graphene. Phys. Rep. 473, 51–87 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Raman spectroscopy of carbon nanotubes. Phys. Rep. 409, 47–99 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    G.A. Rance, D.H. Marsh, S.J. Bourne, T.J. Reade, A.N. Khlobystov, van der Waals interactions between nanotubes and nanoparticles for controlled assembly of composite nanostructures. ACSNano 4, 4920–4928 (2010)Google Scholar
  33. 33.
    Y. Yang, P. Gao, S. Gaba, T. Chang, X. Pan, W. Lu, Observation of conducting filament growth in nanoscale resistive memories. Nat. Comm. 3(732), 1–8 (2012)Google Scholar
  34. 34.
    U. Celano, Metrology and Physical Mechanisms in New Generation Ionic Devices (Springer, New York, 2016)CrossRefGoogle Scholar
  35. 35.
    L. Ma, S. Pyo, J. Ouyang, Q. Xu, Y. Yang, Nonvolatile electrical bistability of organic/metal-nanocluster/organic system. Appl. Phys. Lett. 82, 1419 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Andressa Toppel
    • 1
  • Celso de Araujo Duarte
    • 1
    • 2
    Email author
  • Messai Adenew Mamo
    • 3
    • 4
  1. 1.Programa de Pós-Graduação em Física Universidade Federal do ParanáCuritibaBrazil
  2. 2.Departamento de FísicaUniversidade Federal do ParanáCuritibaBrazil
  3. 3.Department of Applied ChemistryUniversity of JohannesburgJohannesburgSouth Africa
  4. 4.DST-NRF Centre of Excellence in Strong Materials (CoE-SM)JohannesburgSouth Africa

Personalised recommendations