Advertisement

Applied Physics A

, 124:866 | Cite as

Effect of cobalt substitution on the multiferroic characteristics of ferroelectric potassium sodium niobate (K0.5Na0.5NbO3) ceramics

  • K. Shalini
  • D. Prabhu
  • N. V. Giridharan
Article
  • 49 Downloads

Abstract

The room-temperature multiferroic behavior of cobalt-substituted KNN [K0.5Na0.5Nb1−xCoxO3, 0.02 ≤ x ≤ 0.05] ceramics has been investigated. Both the X-ray diffraction and selected area electron diffraction analysis confirm that all the compositions found to be crystallized in the single phase (Orthorhombic, Amm2) without any formation of cobalt clusters and/or other secondary phases such as Co3O4. Co2+ oxidation state and the presence of oxygen vacancies in the samples have been studied through X-ray photoelectron spectroscopic measurements. The changes in the bandgap with the increase of Co concentration in KNN are noticed from UV–Visible absorption spectroscopy. Magnetic measurement on the samples reveals a dominant antiferromagnetic interaction attributed to the Co2+–Co2+ exchange interactions via F0-center and coupling between Co2+–Co2+ through O2−. The existence of exchange bias (EB) effect is also observed in KNaNb1−xCoxO3 (x = 0.03, 0.04, 0.05) samples from the magnetic measurements. In addition, it is found that defect complexes formed between \({\text {Co}^{'''}_{\text{Nb}}}\) and oxygen vacancy lead to the enhanced dielectric, ferro, and piezoelectric properties of K0.5Na0.5Nb1−xCoxO3 ceramics.

Notes

Acknowledgements

One of the authors, K. Shalini would like to thank DST, Govt. of India for the Inspire Grant offer, sanction no (DST/INSPIRE/2015/IF150668). We would like to acknowledge NRIIC, PSG institute of Advanced Studies, Coimbatore and Surface characterization lab, IIT Kanpur for TEM and XPS facility respectively.

References

  1. 1.
    N.A. Hill, J. Phys. Chem. B 104, 6694–6709 (2000)CrossRefGoogle Scholar
  2. 2.
    N.V. Dang, T.D. Thanh, L.V. Hong, V.D. Lam, T.-L. Phan, J. Appl. Phys. 110, 043914 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759–765 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    A. Zorko, M. Pregeli, M. Gomilšek, Z. Jagličić, D. Pajić, M. Telling, I. Arčon, I. Mikulska, M. Valant, Sci. Rep. 5(7703), 1–7 (2015)Google Scholar
  5. 5.
    K.C. Verma, R.K. Kotnala, Mater. Res. Express 3, 055006 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science 299, 1719–1722 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    N. Kumar, A. Shukla, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 28, 6673–6684 (2017)CrossRefGoogle Scholar
  8. 8.
    T.-J. Park, G.C. Papaefthymiou, A.J. Viescas, Y. Lee, H. Zhou, S.S. Wong, Phys. Rev. B 82, 024431 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    N. Kumar, A. Shukla, R.N.P. Choudhary, Prog. Nat. Sci. Mater. Int. 28, 308–314 (2018)CrossRefGoogle Scholar
  10. 10.
    N. Maikhuri, A.K. Panwar, A.K. Jha, J. Appl. Phys. 113, 17D915 (2013)CrossRefGoogle Scholar
  11. 11.
    N. Kumar, A. Shukla, C. Behera, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 27, 7115–7123 (2016)CrossRefGoogle Scholar
  12. 12.
    N. Kumar, A. Shukla, R.N.P. Choudhary, Phys. Lett. A 381, 2721–2730 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    N. Kumar, A. Shukla, R.N.P. Choudhary, J. Alloy. Comp. 747, 895–904 (2018)CrossRefGoogle Scholar
  14. 14.
    H. Nakayama, H. K-Yoshida, Jpn. J. Appl. Phys. 40, L1355–L1358 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    D. Cao, B. Liu, H. Yu, W. Hu, M. Cai, Eur. Phys. J. B 88, 75, 1–7 (2015)Google Scholar
  16. 16.
    H. Liu, B. Cao, C.O.’ Connor, J. Appl. Phys. 109, 07B516 (2011)CrossRefGoogle Scholar
  17. 17.
    Y.-H. Lin, S. Zhang, C. Deng, Y. Zhang, X. Wang, C.-W. Nan, Appl. Phys. Lett. 92, 112501 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    H. Lemziouka, R. Moubah, F.Z. Rachid, Y. Jouane, E.K. Hill, M. Abid, H. Lassri, Ceram. Int. 42, 19402–19405 (2016)CrossRefGoogle Scholar
  19. 19.
    C. Song, C.Z. Wang, Y.C. Yang, X.J. Liu, F. Zeng, F. Pan, Appl. Phys. Lett. 92, 262901 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    A. Astudillo, J.L. Izquierdo, A. Gómez, G. Bolaños, O. Morán, J. Magn. Magn. Mater. 373, 86–89 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    K. Min, F. Huang, X. Lu, Y. Kan, J. Zhang, S. Peng, Y. Liu, J. Su, C. Zhang, Z. Liu, J. Zhu, Solid State Commun. 152, 304–306 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    X. Wang, J. Wu, D. Xiao, J. Zhu, X. Cheng, T. Zheng, B. Zhang, X. Lou, X. Wang, J. Am. Chem. Soc. 136, 2905–2910 (2014)CrossRefGoogle Scholar
  23. 23.
    J. Wu, D. Xiao, J. Zhu, Chem. Rev. 115, 2559 (2015)CrossRefGoogle Scholar
  24. 24.
    P. Kumar, M. Pattanik, Sonia, Ceram. Int. 39, 65–69 (2013)CrossRefGoogle Scholar
  25. 25.
    S.-Y. Liu, S. Liu, D.-J. Li, Y. Shen, H. Dang, Y. Liu, W. Xue, S. Wang, J. Am. Ceram. Soc. 97(12), 4019–4023 (2014)CrossRefGoogle Scholar
  26. 26.
    J. Li, W. Wu, Y. Shen, P. Zhang, Y. Wu, Q. Meng, Z. Zhou, D. Jia, J. Electron. Mater. 47(10), 5773–5779 (2018)ADSCrossRefGoogle Scholar
  27. 27.
    R.D. Shannon, Acta Cryst. A32, 751 (1976)CrossRefGoogle Scholar
  28. 28.
    S.-W. Yu, W.-C.V. Yeh, J.-L. Jou, C.-M. Lei, Ferroelectrics 456, 31–37 (2013)CrossRefGoogle Scholar
  29. 29.
    E. Enriquez, A. Chen, Z. Harrell, P. Dowden, N. Koskelo, J. Roback, M. Janoschek, C. Chen, Q. Jia, Sci. Rep. 7(46184), 1–8 (2017)Google Scholar
  30. 30.
    A. Sahai, Y. Kumar, V. Agarwal, S.F. Olive-Méndez, N. Goswami, J. Appl. Phys. 116, 164315 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    S.A. Lee, H. Jeong, S. Woo, J.-Y. Hwang, S.-Y. Choi, S.-D. Kim, M. Choi, S. Roh, H. Yu, J. Hwang, S.W. Kim, W.S. Choi, Sci. Rep. 6, 23649 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    B. Santara, P.K. Giri, S. Dhara, K. Imakita, M. Fuji, J. Phys. D Appl. Phys. 47, 235304 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    H.-Y. Lee, S.J. Clark, J. Robertson, Phys. Rev. B 86, 075209 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    A.R. West, Solid State Chemistry and its Applications, 2nd Edn. (Wiley, 2014)Google Scholar
  35. 35.
    P. Jiang, W. Xiang, J. Kuang, W. Liu, W. Cao, Solid State Sci. 46, 27–32 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    M. Kuang, T.T. Li, H. Chen, S.M. Zhang, L.L. Zhang, Y.X. Zhang, Nanotechnology 26, 304002 (2015)CrossRefGoogle Scholar
  37. 37.
    C. Rath, P. Mohanty, A.C. Pandey, N.C. Mishra, J. Phys. D Appl. Phys. 42, 205101 (2009)ADSCrossRefGoogle Scholar
  38. 38.
    C.P. Gonzalez, G. Schileo, S. Murakami, A. Khesro, D. Wang, I.M. Reaney, A. Feteira, Appl. Phys. Lett. 110, 172902 (2017)ADSCrossRefGoogle Scholar
  39. 39.
    D.V. Grinberg, M. West, G. Torres, D.M. Gou, L. Stein, G. Wu, E.M. Chen, A.R. Gallo, P.K. Akbashev, J.E. Davies, A.M. Spanier, Rappe, Nature 503, 509–512 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    Z. Wang, H. Gu, Y. Hu, K. Yang, M. Hu, D. Zhou, J. Guan, CrystEngComm 12, 3157–3162 (2010)CrossRefGoogle Scholar
  41. 41.
    L. Yu, J. Jia, G. Yi, Y. Shan, M. Han, Mater. Lett. 184, 166–168 (2016)CrossRefGoogle Scholar
  42. 42.
    M. Sharmila, S.M. Abdul Kader, D.E. Jain Ruth, M. Veera Gajendra Babu, B. Bagyalakshmi, R.T. Ananth Kumar, D. Pathinettam Padiyan, B. Sundarkannan, Mater. Sci. Semicond. Process. 34, 109–113 (2015)CrossRefGoogle Scholar
  43. 43.
    K. Shalini, N.V. Giridharan, Ferroelectrics 518, 52–58 (2017)CrossRefGoogle Scholar
  44. 44.
    J.A. Astudillo, S.A. Dionizio, J.L. Izquierdo, J. Heiras, O. Morán, G. Bolaños, AIP Adv. 8, 055817 (2018)ADSCrossRefGoogle Scholar
  45. 45.
    A. Rani, J. Kolte, P. Gopalan, Ceram. Int. 44, 16703–16711 (2018)CrossRefGoogle Scholar
  46. 46.
    B.D. Cullity, C.D. Graham, Introduction to Magnetic materials, Second edn. (Wiley, Hoboken, 2008), p. 127CrossRefGoogle Scholar
  47. 47.
    D.L. Hou, X.J. Ye, X.Y. Zhao, H.J. Meng, H.J. Zhou, X.L. Li, C.M. Zhen, J. Appl. Phys. 102, 033905 (2007)ADSCrossRefGoogle Scholar
  48. 48.
    J.M.D. Coey, A.P. Douvalis, C.B. Fitzgerald, M. Venkatesan, Appl. Phys. Lett. 84, 1332 (2004)ADSCrossRefGoogle Scholar
  49. 49.
    E. Venkata Ramana, F. Figueiras, A. Mahajan, D.M. Tobaldi, B.F.O. Costa, M.P.F. Graça, M.A. Valente, J. Mater. Chem. C 4, 1066 (2016)CrossRefGoogle Scholar
  50. 50.
    T. Zheng, H. Deng, W. Zhou, X. Zhai, H. Cao, L. Yu, P. Yang, J. Chu, Ceram. Int. 42, 6033–6038 (2016)CrossRefGoogle Scholar
  51. 51.
    M. Manikandan, K. Saravana kumar, C. Venkateswaran, J. Appl. Phys. 118, 234105 (2015)ADSCrossRefGoogle Scholar
  52. 52.
    L.R. Shah, B. Ali, H. Zhu, W.G. Wang, Y.Q. Song, H.W. Wang, Y.Q. Song, H.W. Zhang, S.I. Shah, J.Q. Xiao, J. Phys. Condens. Matter. 21, 486004 (2009)CrossRefGoogle Scholar
  53. 53.
    S.K.S. Patel, P. Dhak, M.-K. Kim, J.-H. Lee, M. Kim, S.-K. Kim, J. Magn. Magn. Mater. 403, 155–160 (2016)ADSCrossRefGoogle Scholar
  54. 54.
    P. Dhak, S.K.S. Patel, M.-K. Kim, J.-H. Lee, M. Kim, S.-K. Kim, J. Magn. Magn. Mater. 408, 67–72 (2016)ADSCrossRefGoogle Scholar
  55. 55.
    J. Nogués, I.K. Schuller, J. Magn. Magn. Mater. 192, 203–232 (1999)ADSCrossRefGoogle Scholar
  56. 56.
    G. Anjum, R. Kumar, S. Mollah, D.K. Shukla, S. Kumar, C.G. Lee, J. Appl. Phys. 107, 103916 (2010)ADSCrossRefGoogle Scholar
  57. 57.
    C.G. Koops, Phys. Rev 83, 121–124 (1951)ADSCrossRefGoogle Scholar
  58. 58.
    M.E. Lines, A.M. Glass, Principles and Applications of Ferroelectrics and Related (Oxford University Press, Oxford, 1977) pp. 71–81Google Scholar
  59. 59.
    F.R. Marcos, P. Marchet, J.–R. Duclère, J.J. Romero, J.F. Fernández, Solid State Commun. 151, 1463–1466 (2011)ADSCrossRefGoogle Scholar
  60. 60.
    S.H. Cha, Y.H. Han, J. Appl. Phys. 100, 104102 (2006)ADSCrossRefGoogle Scholar
  61. 61.
    W.J. Jie, J. Zhu, W.F. Qin, X.H. Wei, J. Xiong, Y. Zhang, A. Bhalla, Y.R. Li, J. Phys. D Appl. Phys. 40, 2854–2857 (2007)ADSCrossRefGoogle Scholar
  62. 62.
    M.-P. Zheng, Y.-D. Hou, F.-Y. Xie, J. Chen, M.-K. Zhu, H. Yan, Acta Mater 61, 1489–1498 (2013)CrossRefGoogle Scholar
  63. 63.
    Y. Li, J. Yuan, D. Wang, D. Zhang, H. Jin, M. Cao, J. Am. Ceram. Soc. 96(11), 3440–3447 (2013)CrossRefGoogle Scholar
  64. 64.
    S. Körbel, C. Elsässer, Phys. Rev. B 88, 214114 (2013)ADSCrossRefGoogle Scholar
  65. 65.
    S.G. Dhumal, S.B. Kulkarni, M.E. Jayasingh, P.B. Joshi, D.J. Salunkhe, J. Mater. Sci. Mater. Electron. 27, 1421–1426 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Advanced Functional Materials Laboratory, Department of PhysicsNational Institute of TechnologyTiruchirappalliIndia
  2. 2.International Advanced Research Center for Powder Metallurgy and New Materials (ARCI)Center for Automotive Energy Materials (CAEM)ChennaiIndia

Personalised recommendations