Advertisement

Applied Physics A

, 124:864 | Cite as

Study of in-situ structural and chemical changes of ultrathin polymer films

  • Mojammel H. Mondal
Article
  • 43 Downloads

Abstract

Simulation of X-ray reflectivity (XRR) curves based on standard theoretical formalism has been performed by changing the structural parameters such as thickness, density, and roughness. Analysis of simulated curves shows that the density of thin films can be obtained within the specified range of thickness assuming chemical and physical changes occur in the system. Also along with this simulation, we have performed experimental XRR studies using polymer thin films of different thicknesses prepared by spin-coating method. In-situ XRR data were collected while chemical and structural changes occur in thin films. Results show that the instant density of the films can be determined during chemical and structural changes in the films as observed by comparison with simulated curves.

References

  1. 1.
    P. Calvert, When a thick film is thin. Nature 384, 311–312 (1996)ADSCrossRefGoogle Scholar
  2. 2.
    C. Frank, W.V. Rao, M.M. Despototoulou, R.F.W. Pease, W.D. Hinsberg, R.D. Miller, J.F. Rabolt, Structure in thin and ultrathin spin-cast polymer films. Science 273, 912–915 (1996)ADSCrossRefGoogle Scholar
  3. 3.
    I.C. Sanchez, Physics of Polymer Surfaces and Interfaces (Butterworth-Heinemann, Boston, 1992)Google Scholar
  4. 4.
    D.I. Bower, An Introduction to Polymer Physics (Cambridge University Press, Cambridge, 2002)CrossRefGoogle Scholar
  5. 5.
    R.L. Jones, S.K. Kumar, D.L. Ho, R.M. Briber, T.P. Russell, Chain conformation in ultrathin polymer films. Nature 400, 146–149 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    F. Evers, C. Jeworrek, S. Tiemeyer, K. Weise, D. Sellin, M. Paulus, B. Struth, M. Tolan, R. Winter, Detection of lipid raft domains in neutral and anionic Langmuir monolayers and bilayers of complex lipid composition. J. Am. Chem. Soc. 131, 9516–9521 (2009)CrossRefGoogle Scholar
  7. 7.
    C. Wang, A. Garcia, H. Yan, K.E. Sohn, A. Hexemer, T.-Q. Nguyen, G.C. Bazan, E.J. Kramer, H. Ade, Interfacial widths of conjugated polymer bilayers. J. Am. Chem. Soc. 131, 12538 (2009)CrossRefGoogle Scholar
  8. 8.
    W.E. Wallace, W.L. Wu, A novel method for determining thin film density by energy-dispersive X-ray reflectivity. Appl. Phys. Lett. 67, 1203 (1995)ADSCrossRefGoogle Scholar
  9. 9.
    H. Zabel, X-ray and neutron reflectivity analysis of thin films and superlattices. Appl. Phys. A Mater. Sci. Process. 58, 159 (1994)ADSCrossRefGoogle Scholar
  10. 10.
    P.F. Miceli, D.A. Neumann, H. Zabel, X-ray refractive index: a tool to determine the average composition in multilayer structures. Appl. Phys. Lett. 48, 24 (1986)ADSCrossRefGoogle Scholar
  11. 11.
    L.G. Parratt, Surface studies of solids by total reflection of X-rays. Phys. Rev. 95, 359–369 (1954)ADSCrossRefGoogle Scholar
  12. 12.
    M.H. Mondal, Study of autocorrelation function of polymer and polymer—nanocomposite solutions using dynamic light scattering method. J. Polym. Res. 24, 218 (2017)CrossRefGoogle Scholar
  13. 13.
    J. Bolze, M. Takahasi, J. Mizuki, T. Baumgart, W. Knoll, X-ray reflectivity and diffraction studies on lipid and lipopolymer Langmuir–Blodgett films under controlled humidity. J. Am. Chem. Soc. 124, 9412–9421 (2002)CrossRefGoogle Scholar
  14. 14.
    M.H. Mondal, M. Mukherjee, Effect of annealing induced polymer substrate attachment on swelling dynamics of ultrathin polymer films. Macromolecules 41, 8753–8758 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    M.H. Mondal, M. Mukherjee, Study of thickness dependent density in ultrathin water soluble polymer films. Macromolecules 42, 732–736 (2009)CrossRefGoogle Scholar
  16. 16.
    J.D. Van Dyke, K.L. Kasperski, Onset kinetics of thermal degradation of ultrathin polyacrylamide films. J. Polym. Sci. Part A Polym. Chem. 31, 1807–1823 (1993)ADSCrossRefGoogle Scholar
  17. 17.
    D.C. Weber, P. Brant, C. Carosella, L.G. Banks, A new method for the chemical modification of polymers. J. Chem. Soc. Chem. Commun. (1981).  https://doi.org/10.1039/C39810000522 CrossRefGoogle Scholar
  18. 18.
    M.H. Mondal, M. Mukherjee, Study of structural evolution during controlled degradation of ultrathin polymer films. Polymer 51, 5550–5555 (2010)CrossRefGoogle Scholar
  19. 19.
    S. Mukherjee, M.H. Mondal, M. Mukherjee, B.P. Doyle, S. Nannarone, Onset kinetics of thermal degradation of ultrathin polyacrylamide films. Macromolecules 42, 7889–7896 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    M.H. Mondal, M. Mukherjee, Effect of thermal modification on swelling dynamics of ultrathin polymer films. Polymer 53, 5170–5177 (2012)CrossRefGoogle Scholar
  21. 21.
    M.H. Mondal, M. Mukherjee, Study of density-dependent swelling of ultrathin water soluble polymer films. J. Polym. Res. 21, 343 (2014)CrossRefGoogle Scholar
  22. 22.
    J. Daillant, A. Gibaud, X-ray and Neutron Reflectivity: Principles and Applications (Springer, Berlin, 1999)Google Scholar
  23. 23.
    T.P. Russell, Materials Science Reports, vol. 5 (Elsevier Science Publ, North-Holland, 1990)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsIndian Institute of Engineering Science and Technology, ShibpurHowrahIndia

Personalised recommendations