Advertisement

Applied Physics A

, 124:853 | Cite as

Preparation and optical properties of Ho3+-doped YSZ single crystals

  • Xiaojun Tan
  • Shoulei Xu
  • Lei Zhang
  • Fenhong Liu
  • Bernard A. Goodman
  • Wen Deng
Article
  • 31 Downloads

Abstract

Single crystals of yttria-stabilized zirconia (YSZ) doped with different contents of holmium were prepared by the optical floating zone method, and their structures and phase composition were characterized by XRD and Raman spectroscopy. These showed that the metastable tetragonal phase was stabilized by the substitutions. Transmittance of each of the Ho3+-doped YSZ single crystals was larger than 85% in the visible region. Measurements of fluorescence spectra indicated a strong emission at a wavelength of 553.5 nm, and two weak emission peaks at 671 nm and 759 nm when the crystals were excited by light with a wavelength of 448 nm. The YSZ doped with 0.75 mol% of Ho2O3 had a relatively higher fluorescence intensity and possessed high color purity (99.7%) in the green region, indicating that it can be used to produce efficient green emission.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundations of China under Grant no. 11675043.

References

  1. 1.
    B. Yan, G. Wang, L. Liu, X. Wang, Y. Chen, J. Han, Color-tunable Al6Si2O13:Eu2+, Mn2+ phosphor with high color rendering index based on energy transfer for warm white LEDs. New J. Chem. 42, 15207–15214 (2018)CrossRefGoogle Scholar
  2. 2.
    H. Wang, T. Yang, L. Feng, Z. Ning, M. Liu, X. Lai, D. Gao, J. Bi, Energy transfer and multicolor tunable luminescence properties of NaGd0.5Tb0.5–xEux(MoO4)2 phosphors for UV-LED. J. Electron. Mater. 47, 6494–6506 (2018)ADSCrossRefGoogle Scholar
  3. 3.
    L. Shamshad, N. Ali, J. Ataullah, J. Kaewkhao, G. Rooh, T. Ahmad, F. Zaman, Luminescence characterization of Sm3+-doped sodium potassium borate glasses for laser application. J. Alloys Compd. 766, 828–840 (2018)CrossRefGoogle Scholar
  4. 4.
    D. Gelija, L. Kadathala, D.P.R. Borelli, Energy transfer dynamics of Er3+/Nd3+ embedded SiO2–Al2O3–Na2CO3–SrF2–CaF2 glasses for optical communications. Opt. Mater. 78, 172–180 (2018)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Chen, J. Wang, M. Zhanga, Q. Zenga, Light conversion material: LiBaPO4:Eu2+, Pr3+, suitable for solar cell. RSC Adv. 7, 21221–21225 (2017)CrossRefGoogle Scholar
  6. 6.
    J. Cao, D. Xu, F. Hu, X. Li, W. Chen, L. Chen, H. Guo, Transparent Sr0.84Lu0.16F2.16:Yb3+, Er3+ glass ceramics: elaboration, structure, up-conversion properties and applications. J. Eur. Ceram. Soc. 38, 2753–2758 (2018)CrossRefGoogle Scholar
  7. 7.
    M.A. Melkozerova, Y.V. Baklanova, O.A. Lipina, A.Y. Chufarov, A.P. Tyutyunnik, V.G. Zubkov, Novel IR phosphor based on Sr3La2(Ge3O9)2:Nd3+, Ho3+ germanate. Phys. Solid State 60, 364–369 (2018)ADSCrossRefGoogle Scholar
  8. 8.
    W. Jing, P. Loiko, J.M. Serres, Y. Wang, E. Kifle, E. Vilejshikova, M. Aguiló, F. Díaz, U. Griebner, H. Huang, V. Petrov, X. Mateos, Synthesis, spectroscopic characterization and laser operation of Ho3+ in “mixed” (Lu, Sc)2O3 ceramics. J. Lumin. 203, 145–151 (2018)CrossRefGoogle Scholar
  9. 9.
    T. Du, Q. Ruan, R. Yang, W. Li, K. Wang, Z. Luo, 1.7-µm Tm/Ho-codoped all-fiber pulsed laser based on intermode-beating modulation technique. J. Lightwave Technol. 36, 4894–4899 (2018)ADSCrossRefGoogle Scholar
  10. 10.
    Z. Chen, G. Liu, J. Sui, D. Li, Y. Song, F. Hong, X. Dong, J. Wang, W. Yu, Multifunctional PVP-Ba2GdF7:Yb3+, Ho3+ coated on Ag nanospheres for bioimaging and tumor photothermal therapy. Appl. Surf. Sci. 458, 931–939 (2018)ADSCrossRefGoogle Scholar
  11. 11.
    Y. Feng, Q. Xiao, Y. Zhang, F. Li, Y. Li, C. Li, Q. Wang, L. Shi, H. Lin, Neodymium-doped NaHoF4 nanoparticles as near-infrared luminescent/T2-weighted MR dual-modal imaging agents in vivo. J. Mater. Chem. B. 5, 504–510 (2017)CrossRefGoogle Scholar
  12. 12.
    V.A. Ferby, M. Bououdina, A.M.E. Raj, Dependence of photoluminescence on doping concentration of Ho3+ in nanocrystalline La(OH)3. J. Mater. Sci. 29, 18718–18726 (2018)Google Scholar
  13. 13.
    W. Gao, X. Kong, Q. Han, Y. Chen, J. Zhang, X. Zhao, X. Yan, J. Liu, J. Shi, J. Dong, Enhanced red upconversion emission of Ho3+ in NaYF4 nanocrystals. J. Lumin. 202, 381–387 (2018)CrossRefGoogle Scholar
  14. 14.
    J. Wang, Y. Bu, X. Wang, H.J. Seo, Optical thermometry in low temperature through manipulating the energy transfer from WO6 6− to Ho3+ in Y2WO6:Ho3+ phosphors. Opt. Mater. 84, 778–785 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    M. Song, N. Zhang, Q. Meng, L. Wang, X. Li, G. Wang, Crystal growth and spectral characterizations of Ho3+-doped Li3Ba2La3(MoO4)8 crystal. J. Rare Earth 35, 368–373 (2017)CrossRefGoogle Scholar
  16. 16.
    E.H. Kisi, C.J. Howard, Crystal structures of zirconia phases and their inter-relation. Key Eng. Mater. 153, 1–36 (1998)CrossRefGoogle Scholar
  17. 17.
    C. Viazzi, J. Bonino, F. Ansart, A. Barnabé, Structural study of metastable tetragonal YSZ powders produced via a sol-gel route. J. Alloys Compd. 452, 377–383 (2008)CrossRefGoogle Scholar
  18. 18.
    T. Zhu, Z. Xie, Y. Han, S. Li, Y. Li, D. An, X. Luo, A novel approach to improve flexural strength of Al2O3-20 wt% ZrO2 composites by oscillatory pressure sintering. J. Am. Ceram. Soc. 101, 1397–1401 (2018)CrossRefGoogle Scholar
  19. 19.
    T. Yeh, R. Lin, B. Cherng, J. Cherng, Effects of sputtering mode on the microstructure and ionic conductivity of yttria-stabilized zirconia films. J. Cryst. Growth 489, 57–62 (2018)ADSCrossRefGoogle Scholar
  20. 20.
    J. Kiilakoski, R. Musalek, F. Lukac, H. Koivuluoto, P. Vuoristo, Evaluating the toughness of APS and HVOF-sprayed Al2O3–ZrO2-coatings by in-situ- and macroscopic bending. J. Eur. Ceram. Soc. 38, 1908–1918 (2018)CrossRefGoogle Scholar
  21. 21.
    V.V. Rodaev, A.O. Zhigachev, Y.I. Golovin, Microstructure and phase composition of CaO doped zirconia nanofibers. Ceram. Int. 43, 1200–1204 (2017)CrossRefGoogle Scholar
  22. 22.
    P. Granger, S. Troncéa, J.P. Dacquin, M. Trentesaux, V.I. Parvulescu, Support-induced effect on the catalytic properties of Pd particles in water denitrification: impact of surface and structural features of mesoporous ceria-zirconia support. Appl. Catal. B Environ. 224, 648–659 (2018)CrossRefGoogle Scholar
  23. 23.
    B. Kim, H. Lee, Valence state and ionic conduction in Mn-doped MgO partially stabilized zirconia. J. Am. Ceram. Soc. 101, 1790–1795 (2018)CrossRefGoogle Scholar
  24. 24.
    D.K. Das, J.P. McDonald, S.M. Yalisove, T.M. Pollock, Femtosecond pulsed laser damage characteristics of 7% Y2O3–ZrO2 thermal barrier coating. Appl. Phys. A 91, 421–428 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    L. Guo, M. Li, F. Ye, Phase stability and thermal conductivity of RE2O3 (RE = La, Nd, Gd, Yb) and Yb2O3 co-doped Y2O3 stabilized ZrO2 ceramics. Ceram. Int. 42, 7360–7365 (2016)CrossRefGoogle Scholar
  26. 26.
    P. Li, I.W. Chen, J.E. Penner-Hahn, Effect of dopants on zirconia stabilization—an X-ray absorption study: I, trivalent dopants. J. Am. Ceram. Soc. 77, 118–128 (1994)CrossRefGoogle Scholar
  27. 27.
    R.C. Garvie, P.S. Nicholson, Structure and thermomechanical properties of partially stabilized zirconia in the CaO–ZrO2 system. J. Am. Ceram. Soc. 55, 152–157 (1972)CrossRefGoogle Scholar
  28. 28.
    J. Dutta, V.K. Rai, Zirconia based Ho3+–Yb3+ codoped upconverting nanophosphors for green light emitting devices applications. Methods Appl. Fluoresc. 6, 025003 (2018)ADSCrossRefGoogle Scholar
  29. 29.
    J.P. Hurrell, S.P.S. Porto, Optical phonons of yttrium aluminum garnet. Phys. Rev. 173, 851–856 (1968)ADSCrossRefGoogle Scholar
  30. 30.
    M. Yadav, M. Mondal, L. Mukhopadhyay, V.K. Rai, Intense blue upconversion emission and intrinsic optical bistability in Tm3+/Yb3+/Zn2+ tridoped YVO4 phosphors. Methods Appl. Fluoresc. 6, 025001 (2018)ADSCrossRefGoogle Scholar
  31. 31.
    E.W. Barrera, M.C. Pujol, F. Diaz, S.B. Choi, F. Rotermund, K.H. Park, M.S. Jeong, C. Cascales, Emission properties of hydrothermal Yb3+, Er3+ and Yb3+, Tm3+-codoped Lu2O3 nanorods: upconversion, cathodoluminescence and assessment of waveguide behavior. Nanotechnology 22, 075205 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    Y. Chan, H. Lai, C. Chen, Enhancing oxygen iron conductivity of 8YSZ electrolytes in SOFC by doping with Fe2O3. Comput. Mater. Sci. 147, 1–6 (2018)CrossRefGoogle Scholar
  33. 33.
    K. Zhao, X. Hou, Q. Bkour, M.G. Norton, S. Ha, NiMo-ceria-zirconia catalytic reforming layer for solid oxide fuel cells running on a gasoline surrogate. Appl. Catal. B Environ. 224, 500–507 (2018)CrossRefGoogle Scholar
  34. 34.
    M.A. Laguna-Bercero, A.R. Hanifi, L. Menand, N.K. Sandhu, N.E. Anderson, T.H. Etsell, P. Sarkar, The effect of pore-former morphology on the electrochemical performance of solid oxide fuel cells under combined fuel cell and electrolysis modes. Electrochim. Acta 268, 195–201 (2018)CrossRefGoogle Scholar
  35. 35.
    R. You, X. Hao, H. Yu, B. Wang, G. Lu, F. Liu, T. Cui, High performance mixed-potential-type zirconia-based NO2 sensor with self-organizing surface structures fabricated by low energy ion beam etching. Sens. Actuators B Chem. 263, 445–451 (2018)CrossRefGoogle Scholar
  36. 36.
    J. Liao, Q. Wang, L. Nie, W. You, J. Chen, Single red upconversion and near-infrared downconversion luminescence properties of cubic ZrO2:Y3+–Yb3+–Er3+ nanophosphors via microwave hydrothermal synthesis. Opt. Mater. 62, 479–484 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    Y. Bai, W. Fan, K. Liu, Y.X. Kang, Y. Gao, F. Ma, Gradient La2Ce2O7/YSZ thermal barrier coatings tailored by synchronous dual powder feeding system. Mater. Lett. 219, 55–58 (2018)CrossRefGoogle Scholar
  38. 38.
    L. Chen, Y. Liu, Y. Li, Preparation and characterization of ZrO2:Eu3+ phosphors. J. Alloys Compd. 381, 266–271 (2004)CrossRefGoogle Scholar
  39. 39.
    Y. Gong, K. Zhao, H. He, W. Cai, N. Tang, H. Ning, S. Wu, J. Gao, G. Zhou, X. Lu, J. Liu, Solution processable high quality ZrO2 dielectric films for low operation voltage and flexible organic thin film transistor applications. J. Phys. D Appl. Phys. 51, 115105 (2018)ADSCrossRefGoogle Scholar
  40. 40.
    W. Wagner, J.A. Eastman, Characterization of yttria-stabilized zirconia coatings with controlled nanometer-sized porosity by SANS. Appl. Phys. A 74, s1007–s1009 (2002)ADSCrossRefGoogle Scholar
  41. 41.
    G. Balakrishnan, K. Thanigaiarul, P. Sudhakara, J.I. Song, Microstructural and optical properties of nanocrystalline undoped zirconia thin films prepared by pulsed laser deposition. Appl. Phys. A 110, 427–432 (2013)ADSCrossRefGoogle Scholar
  42. 42.
    V. Singh, V.K. Rai, K. Al-Shamery, M. Haase, S.H. Kim, NIR to visible frequency upconversion in Er3+ and Yb3+ codoped ZrO2 phosphor. Appl. Phys. A 113, 747–753 (2013)ADSCrossRefGoogle Scholar
  43. 43.
    P.E. Tomaszewski, Jan Czochralski—father of the Czochralski method. J. Cryst. Growth 236, 1–4 (2002)ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    H. Römer, K.D. Luther, W. Assmus, Coloured zirconia. Cryst. Res. Technol. 29, 787–794 (1994)CrossRefGoogle Scholar
  45. 45.
    S. Gutzov, W. Assmus, The luminescence of holmium doped cubic yttria-stabilized zirconia. J. Mater. Sci. Lett. 19, 275–277 (2000)CrossRefGoogle Scholar
  46. 46.
    E. Fernández López, V. Sánchez Escribano, M. Panizza, M.M. Carnasciali, G. Busca, Vibrational and electronic spectroscopic properties of zirconia powders. J. Mater. Chem. 11, 1891–1897 (2001)CrossRefGoogle Scholar
  47. 47.
    V.V. Popov, A.P. Menushenkov, A.A. Yastrebtsev, N.A. Tsarenko, L.A. Arzhatkina, I.V. Shchetinin, M.V. Zheleznyi, K.V. Ponkratov, Regularities of formation of complex oxides with the fluorite structure in the ZrO2–Y2O3 system. Russ. J. Inorg. Chem. 62, 1147–1154 (2017)CrossRefGoogle Scholar
  48. 48.
    V.G. Keramidas, W.B. White, Raman scattering study of the crystallization and phase transformations of ZrO2. J. Am. Ceram. Soc. 57, 22–24 (1974)CrossRefGoogle Scholar
  49. 49.
    C. Zhang, T. Liu, H. Wang, F. Wang, X. Pan, Synthesis of acetyl salicylic acid over WO3/ZrO2 solid superacid catalyst. Chem. Eng. J. 174, 236–241 (2011)CrossRefGoogle Scholar
  50. 50.
    H. Fujimori, M. Yashima, S. Sasaki, M. Kakihana, T. Mori, M. Tanaka, M. Yoshimura, Cubic-tetragonal phase change of yttria-doped hafnia solid solution: high-resolution X-ray diffraction and Raman scattering. Chem. Phys. Lett. 346, 217–223 (2001)ADSCrossRefGoogle Scholar
  51. 51.
    K. Witke, W. Österle, A. Skopp, M. Woydt, Raman microprobe spectroscopy and transmission electron microscopy of thermal sprayed ZrO2 coatings before and after rub testing of outer air seals. J. Raman Spectrosc. 32, 1008–1014 (2001)ADSCrossRefGoogle Scholar
  52. 52.
    S.N. Basahel, T.T. Ali, M. Mokhtar, K. Narasimharao, Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange. Nanoscale Res. Lett. 10, 1–13 (2015)CrossRefGoogle Scholar
  53. 53.
    M. Venkateswarlu, S. Mahamuda, K. Swapna, M.V.V.K. Prasad, A. Srinivasa Rao, S. Shakya, A.M. Babu, G.V. Prakash, Holmium doped lead tungsten tellurite glasses for green luminescent applications. J. Lumin. 163, 64–71 (2015)CrossRefGoogle Scholar
  54. 54.
    K. Bhargavi, M. Sundara Rao, V. Sudarsan, C. Srinivasa Rao, M. Piasecki, I.V. Kityk, M. Srinivasa Reddy, N. Veeraiah, Influence of Al3+ ions on self up-conversion in Ho3+ doped lead silicate glasses. Opt. Mater. 36, 1189–1196 (2014)ADSCrossRefGoogle Scholar
  55. 55.
    C. Srinivasa Rao, K. Upendra Kumar, P. Babu, C.K. Jayasankar, Optical properties of Ho3+ ions in lead phosphate glasses. Opt. Mater. 35, 102–107 (2012)ADSCrossRefGoogle Scholar
  56. 56.
    E.F. Schubert, Light-Emitting Diodes, (Chap. 17), 2nd edn. (Cambridge University Press, Cambridge, 2006), p. 292Google Scholar
  57. 57.
    S. Som, A.K. Kunti, V. Kumar, V. Kumar, S. Dutta, M. Chowdhury, S.K. Sharma, J.J. Terblans, H.C. Swart, Defect correlated fluorescent quenching and electron phonon coupling in the spectral transition of Eu3+ in CaTiO3 for red emission in display application. J. Appl. Phys. 115, 193101 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiaojun Tan
    • 1
  • Shoulei Xu
    • 1
  • Lei Zhang
    • 1
  • Fenhong Liu
    • 1
  • Bernard A. Goodman
    • 1
  • Wen Deng
    • 1
  1. 1.School of Physical Science and Technology, Guangxi UniversityNanningPeople’s Republic of China

Personalised recommendations