Applied Physics A

, 125:3 | Cite as

Novel photocatalyst nitrogen-doped simonkolleite Zn5(OH)8Cl2·H2O with vis-up-conversion photoluminescence and effective visible-light photocatalysis

  • Junfeng He
  • Jiamin Hu
  • Xi Mo
  • Qing Hao
  • Zhili Fan
  • Guannan He
  • Yinzhen Wang
  • Wei Li
  • Qinyu HeEmail author


As photocatalysts exhibit selectivity toward various pollutants, it is necessary to develop different and novel photocatalysts. In this work, a novel photocatalyst-nitrogen-doped simonkolleite Zn5(OH)8Cl2·H2O (DSM) is prepared through a new facile method: calcinating the mixture of zinc hydroxide, urea, and guanidine hydrochloride at 575 °C for 1 h in a furnace with an air atmosphere. The as-prepared sample was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) spectra, UV–visble near-infrared diffuse reflection spectra (UV–Vis–NIR DRS), Brunauer–Emmett–Teller (BET) method, Ramen spectra and Zeta potential measurement, photocatalytic properties, as well as active species trapping experiments. XRD and XPS show the as-prepared powder is nitrogen-doped simonkolleite Zn5(OH)8Cl2H2O (DSM) with a small ZnCl2 fraction. SEM investigation indicates that the as-prepared powder possesses a flower-like layered shape. The UV–Vis–NIR exhibits that after doping, the DSM possesses strong light absorption in the ranges of 300–500 and 1400–2500 nm, a direct electronic transition with a band gap energy of 2.469 eV. PL measurement reveals a strong photoluminescence and an up-conversion from lower to higher-energy visible light in as-prepared samples. Zeta potential investigations show that during photocatalysis, the charges on as-prepared photocatalyst are positive. The photocatalytic experiments show a good dark adsorption, a high photodegradation (99.4% at 60 min), a high pseudo-first-order constant (k) of 0.0261 min−1. Meanwhile, the active species trapping experiments suggest that hole (h+) is the dominant active species during photocatalysis. It is concluded that the doping favors in enhancing vis-light-photocatalysis. This work makes a significant contribution to the literature.



The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (Grant nos. 51672090 and 51372092).


  1. 1.
    W.A. Saoud, A.A. Assadi, M. Guiza, A. Bouzaza, W. Aboussaoud, I. Soutrel, A. Ouederni, D. Wolbert, S. Rtimi, Chem. Eng. J. 344, 165 (2018)CrossRefGoogle Scholar
  2. 2.
    C.L. Mao, H.G. Cheng, H. Tian, H. Li, W.J. Xiao, H. Xu, J.C. Zhao, L.Z. Zhang, Appl. Catal. B Environ. 228, 87 (2018)CrossRefGoogle Scholar
  3. 3.
    Y.F. Lu, Y. Huang, Y.F. Zhang, J.J. Cao, H.W. Li, C. Bian, S.C. Lee, Appl. Catal. B Environ. 231, 357 (2018)CrossRefGoogle Scholar
  4. 4.
    L. Yang, Y. Liu, R.Y. Zhang, W. Li, P. Li, X. Wang, Y. Zhou, Chinese. J. Catal. 39, 646 (2018)CrossRefGoogle Scholar
  5. 5.
    N. Tong, Y. Wang, Y. Liu, M.B. Li, Z.Z. Zhang, H.J. Huang, T. Sun, J.X. Yang, F.Y. Li, X.X. Wang, J. Catal. 361, 303 (2018)CrossRefGoogle Scholar
  6. 6.
    H.F. Lin, Y.Y. Li, H.Y. Li, X. Wang, Nano Res. 10, 1377 (2017)CrossRefGoogle Scholar
  7. 7.
    X.A. Dong, W.D. Zhang, W. Cui, Y.J. Sun, H.W. Huang, Z.B. Wu, F. Dong, Catal. Sci. Technol. 7, 1324 (2017)CrossRefGoogle Scholar
  8. 8.
    H. Li, J. Li, Z.H. Ai, F.L. Jia, L.Z. Zhang, Chem. Int. Ed. 57, 122 (2018)CrossRefGoogle Scholar
  9. 9.
    W.A. Badawy, Sol. Energ. Mat. Sol. C. 71, 281 (2002)CrossRefGoogle Scholar
  10. 10.
    N.T. Hoang, N.V. Suc, T.V. Nguyen, Int. J. Nanotechnol. 12, 367 (2015)CrossRefADSGoogle Scholar
  11. 11.
    S. Fujita, Proc. SPIE. 7041, 70410M (2008). CrossRefGoogle Scholar
  12. 12.
    J. Huang, G. Huang, C. An, Y. He, Y. Yao, P. Zhang, J. Shen, Environ. Pollut. 238, 52 (2018)CrossRefGoogle Scholar
  13. 13.
    S.M.A. Moniem, M.E.M. Ali, T.A. Gad-Allah, A.S.G. Khalil, M. Ulbricht, M.F. El-Shahat, A.M. Ashmawy, H.S. Ibrahim, Process. Saf. Environ. 95, 247 (2015)CrossRefGoogle Scholar
  14. 14.
    F. Pen, L. Cai, L. Huang, H. Yu, H. Wang, J. Phys. Chem. Solids 69, 1657 (2008)CrossRefADSGoogle Scholar
  15. 15.
    C. Du, J.S. Zhou, F.Z. Li, W. Li, Y.Z. Wang, Q.Y. He, Appl. Phys. A 122, 714 (2016)CrossRefADSGoogle Scholar
  16. 16.
    A. Ahmido, A. Sabbar, H. Zouihri, K. Dakhsi, F. Guedira, M. Serghini-Idrissi, S. El, Hajjaji, Mat. Sci. Eng. B. 176, 1032 (2011)CrossRefGoogle Scholar
  17. 17.
    M. Prestat, L. Holzer, B. Lescop, S. Rioual, C. Zaubitzer, E. Diler, D. Thierry, Electrochem. Commun. 81, 56 (2017)CrossRefGoogle Scholar
  18. 18.
    Y.Q. Zhu, X.H. Zhang, Z.Y. Lan, H.F. Li, X.T. Zhang, Q.W. Li, Mater. Design. 93, 503 (2016)CrossRefGoogle Scholar
  19. 19.
    L.H. Fu, Y.Y. Dong, M.G. Ma, S.M. Li, M.L. Sun, S.L. Sun, Mater. Lett. 92, 136 (2013)CrossRefGoogle Scholar
  20. 20.
    M.R. Mahmoudian, W.J. Basirun, Y. Alias, M. Ebadi, Appl. Surf. Sci. 257, 10539 (2011)CrossRefADSGoogle Scholar
  21. 21.
    M.S. Refat, K.M. Elsabawy, J. Mol. Struct. 984, 287 (2010)CrossRefADSGoogle Scholar
  22. 22.
    H. Tanaka, A. Fujioka, Mater. Res. Bull. 45, 46 (2010)CrossRefGoogle Scholar
  23. 23.
    T. Ishikawa, K. Matsumoto, K. Kandori, T. Nakayama, J. Solid. State. Chem. 179, 1110 (2006)CrossRefADSGoogle Scholar
  24. 24.
    H. Tanaka, A. Fujioka, A. Futoyu, K. Kandori, T. Ishikawa, J. Solid. State. Chem. 180, 2061 (2007)CrossRefADSGoogle Scholar
  25. 25.
    Y. Li, Y.L. Zou, Y.Y. Hou, Cryst. Res. Technol. 46, 305 (2015)CrossRefGoogle Scholar
  26. 26.
    C. Du, D.H. Li, Q.Y. He, J.M. Liu, W. Li, G.N. He, Y.Z. Wang, Phys. Chem. Chem. Phys. 18, 26530 (2016)CrossRefGoogle Scholar
  27. 27.
    X.Y. Liu, D. Xu, L. Zhang, Acs. Sustain. Chem. Eng. 5, 7800 (2017)CrossRefGoogle Scholar
  28. 28.
    J. Wan, X. Du, E.Z. Liu, Y. Hu, J. Fan, X.Y. Hu, J. Catal. 345, 281 (2017)CrossRefGoogle Scholar
  29. 29.
    H.M. Zhao, Q.S. Xia, H.Z. Xing, D.S. Chen, H. Wang, Acs. Sustain. Chem. Eng. 5, 4449 (2017)CrossRefGoogle Scholar
  30. 30.
    S. Cousy, N. Gorodylova, L. Svoboda, J. Zelenka, Chem. Pap. 71, 2325 (2017)CrossRefGoogle Scholar
  31. 31.
    L.G. Mar, P.Y. Timbrell, R.N. Lamb, Thin. Solid. Films. 223, 341 (1993)CrossRefADSGoogle Scholar
  32. 32.
    D.C. Joshi, S. Nayak, P. Suresh, K.S. Suresh, B.V.M. Kumar, S. Thota, Phys. Status Solidi B 252, 2323 (2015)CrossRefADSGoogle Scholar
  33. 33.
    J. Liu, R.L. Zhu, T.Y. Xu, Y. Xu, F. Ge, Y.F. Xi, J.X. Zhu, H.P. He, Chemosphere. 144, 1148 (2016)CrossRefADSGoogle Scholar
  34. 34.
    X.N. Kang, H. Zhu, C.Y. Wang, K. Sun, J. Yin, J. Colloid. Interf. Sci. 509, 369 (2018)CrossRefADSGoogle Scholar
  35. 35.
    S. Zhang, K. Tian, B.H. Cheng, H. Jiang, Acs. Sustain. Chem. Eng. 5, 6682 (2017)CrossRefGoogle Scholar
  36. 36.
    C.D. Wagner, D.A. Zatko, R.H. Raymond, Anal. Chem. 52, 1445 (1980)CrossRefGoogle Scholar
  37. 37.
    V.I. Nefedov, D. Gati, B.F. Dzhurinskii, N.P. Sergushin, Y.V. Salyn, Zh. Neorg. Khimii. 20, 2307 (1975)Google Scholar
  38. 38.
    A. Abidli, Rsc. Adv. 5, 92743 (2015)CrossRefGoogle Scholar
  39. 39.
    X. Xiao, Z.G. Zeng, S.W. Xiao, J. Hazard. Mater. 151, 118 (2008)CrossRefGoogle Scholar
  40. 40.
    M.C. Bernard, A.H.L. Goff, D. Massinon, N. Phillips, Corros. Sci. 35, 1339 (1993)CrossRefGoogle Scholar
  41. 41.
    F. Abdel-Wahab, I.M. Ashraf, S.E. Alomairy, Phys. B. 530, 300 (2018)CrossRefADSGoogle Scholar
  42. 42.
    F.T. Li, Y. Zhao, Y. Liu, Y.J. Hao, R.H. Liu, D.S. Zhao, Chem. Eng. J. 173, 750 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Junfeng He
    • 1
  • Jiamin Hu
    • 1
  • Xi Mo
    • 1
  • Qing Hao
    • 2
  • Zhili Fan
    • 1
  • Guannan He
    • 1
  • Yinzhen Wang
    • 1
  • Wei Li
    • 1
  • Qinyu He
    • 1
    Email author
  1. 1.Guangdong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, School of Physics and TelecommunicationSouth China Normal UniversityGuangzhouChina
  2. 2.Department of Aerospace and Mechanical EngineeringUniversity of ArizonaTucsonUSA

Personalised recommendations