Applied Physics A

, 124:846 | Cite as

Surface micro-structuring of type 304 stainless steel by femtosecond pulsed laser: effect on surface wettability and corrosion resistance

  • A. K. Singh
  • B. Sunil Kumar
  • P. Jha
  • A. Mahanti
  • Kulwant Singh
  • Vivekanand Kain
  • S. Sinha


This paper presents results on femtosecond (fs) pulsed laser-based surface micro-structuring of type 304 stainless steel (304 SS). Post laser treatment surface wettability and corrosion resistance investigation are reported. SS sample surfaces have been micro-structured using a typical laser fluence of ~ 0.9 J/cm2 for varying sample scanning speed in the range 25–1000 µm/s. Dense array of micro-protrusions have been generated without formation of a crater for an optimized target scan speed exceeding 200 µm/s. Static water contact angle (WCA) measurement indicated super-hydrophilic behavior immediately after laser treatment. However, hydrophilicity (wettability) was found to decrease with storage time with sample becoming highly hydrophobic (WCA: 144° ± 5°) within 50 days after laser treatment. Corrosion resistance of the laser-treated samples was measured by potentio-dynamic polarization technique. Fs laser micro-structured SS has shown poorer corrosion resistance in comparison to pristine surface. Observed poorer corrosion resistance of laser-treated surface has been explained on the basis of surface chemical composition and surface roughness. The results demonstrated that corrosion resistance increased with increasing hydrophobicity of the SS surface.



The authors are thankful to Dr B. Viswanath, MSD, BARC for his help in SEM characterization.


  1. 1.
    K.M. Lecka, A.J. Antonczak, B. Szubzda, M.R. Wojcik, B.D. Stepak, P. Szymczyk, M. Trzcinski, M. Ozimek, K.M. Abramski, Effects of laser induced oxidation on the corrosion resistance of AISI 304 stainless steel. J. Laser Appl. 28(3), 032009, 1–9 (2016)CrossRefGoogle Scholar
  2. 2.
    T.M. Yue, J.K. Yu, H.C. Man, The effect of excimer laser surface treatment on pitting corrosion resistance of 316 LS stainless steel. Surf. Coat. Tech. 137, 65–71 (2001)CrossRefGoogle Scholar
  3. 3.
    P. Gumpel, A. Hortnagl, Influence of surface condition on corrosion behavior of stainless steel. Mater. Corros. 67(6), 607–620 (2016)CrossRefGoogle Scholar
  4. 4.
    R. Lage, P. Moller, H.E. Fallesen, The effect of surface treatment and topography on corrosion behavior of EN 1.4404 stainless steel. Mater. Corros. 66, 1060–1067 (2015)CrossRefGoogle Scholar
  5. 5.
    G. Hultquist, C. Leygraf, Surface composition of a type 316 stainless steel related to initiation of crevice corrosion. Corrosion 36(3), 126–129 (1980)CrossRefGoogle Scholar
  6. 6.
    R.Z. Zand, K.V.A. Adriaens, The corrosion resistance of 316L stainless steel coated with a silane hybrid nano-composite coating. Progress in organic coatings 72, 709–715 (2011)CrossRefGoogle Scholar
  7. 7.
    G.X. Shen, Y.C. Chen, C.J. Lin, Corrosion protection of 316L stainless steel by a TiO2 nanoparticle coating prepared by sol-gel method. Thin Solid Films 489, 130–136 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    W.T. Choi, K. Oh, P.M. Singh, V. Breedveld, D.W. Hess, Hydrophobicity and improved corrosion resistance of grain boundary etched stainless steel in chloride containing environment. J. Electrochem. Soc. 164(2), C61–C65 (2017)CrossRefGoogle Scholar
  9. 9.
    J. Barnikel, T. Seefeld, A. Emmel, E. Schubert, H.W. Bergmann, Enhancing the corrosion resistance of metals by laser processing. JOM 48(5):29–32 (1996)ADSCrossRefGoogle Scholar
  10. 10.
    S. Valette, P. Steyer, L. Richard, B. Forest, C. Donnet, E. Audouard, Influence of femtosecond laser marking on the corrosion resistance of stainless steel. Appl. Surf. Sci. 252(13), 4696–4701 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    A. Conde, R. Colaco, R. Vilar, J. de Damborenea, Corrosion behavior of steels after laser surface melting. Mater. Des. 21, 441–445 (2000)CrossRefGoogle Scholar
  12. 12.
    U. Trdan, M. Hocevar, P. Gregorcic, Transition from superhydrophilic to superhydrophobic state of laser textured stainless steel surface and its effect on corrosion resistance. Corros. Sci. 123, 21–26 (2017)CrossRefGoogle Scholar
  13. 13.
    S. Krishnan, J. Dumbre, S. Bhatt, E.T. Akinlabi, R. Ramalingam, Effect of crystallographic orientation on the pitting corrosion resistance of laser surface melted AISI 304L austenitic stainless steel. Int. J. Mech. Mechatronics Eng. 7(4), 650–653 (2013)Google Scholar
  14. 14.
    M. Martínez-Calderon et al., Femtosecond laser fabrication of highly hydrophobic stainless steel surface with hierarchical structures fabricated by combining ordered microstructures and LIPSS. Appl. Surf. Sci. 374, 81–89 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    S. Moradi et al., Femtosecond laser irradiation of metallic surfaces: effects of laser parameters on superhydrophobicity. Nanotechnology 24(12), 415302 (2013)CrossRefGoogle Scholar
  16. 16.
    P. Bizi-Bandoki, Modifications of roughness and wettability properties of metals induced by femtosecond laser treatment. Appl. Surf. Sci. 257(12), 5213–5218 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    D. Pietroy, Y. Di Maio, B. Moine, E. Baubeau, E. Audouard, Femtosecond laser volume ablation rate and threshold measurement by differential weighing. Opt. Express 20(28), 29900–29908 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    T. Chiba, R. Komura, A. Mori, Formation of micro-spike array on a silicon wafer. Jpn. J. Appl. Phys. 39, 4803–4810 (2000)ADSCrossRefGoogle Scholar
  19. 19.
    Q.Z. Zhao, F. Ciobanu, L.J. Wang, Self-organized regular array of carbon nano-cones induced by ultra short laser pulses and their field emission properties. J. Appl. Phys. 105, 083103, 1–4 (2008)Google Scholar
  20. 20.
    R. Lloyd, A. Abdolvand, M. Schmidt, P. Crouse, D. Whitehead, Z. Liu, L. Li, Laser assisted generation of self assembled micro-structures on stainless steel. Appl. Phys. A 93, 117–122 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    V.I. Emelyanov, Mechanism of laser induced self organization of nano and microstructures of surface relief in air and in liquid environment, in Laser ablation in liquids, ed. by G. Yang (Published by Panstanford Publishing Pte, Ltd., Singapore, 2012)Google Scholar
  22. 22.
    K.M. Tanvir, C. Ahmmed, A.-M. Grambow, Kietzig, Fabrication of micro/nano structures on metals by femtosecond laser micromachining. Micromachines 5, 1219–1253 (2014)CrossRefGoogle Scholar
  23. 23.
    D. Zhang, L. Wang, H. Qian, X. Li, Superhydrophnic surfaces for corrosion protection: a review of recent progresses and future direction. J. Coat., Technol. Res. 13(1), 11–29 (2016)CrossRefGoogle Scholar
  24. 24.
    A.M. Kietzig, S.G. Hatzikiriakos, P. Englezos, Patterned superhydrophobic metallic surfaces. Langmuir 25(8), 4821–4827 (2009)CrossRefGoogle Scholar
  25. 25.
    S.R.M. Mollabshi, K. Madanipour, Nanosecond laser surface patterning of bio grade 316L stainless steel for controlling its wettability characteristics. Int. J. Opt. Photon. 09(01), 43–52 (2015)Google Scholar
  26. 26.
    J. Long, M. Zhong, P. Fan, D. Gong, H. Zhang, Wettability conversion of ultrafast laser structured copper surface. J. Laser, Appl. 27(S2), 1–6 (2015)CrossRefGoogle Scholar
  27. 27.
    D.V. Ta, A. Dunn, T.J. Wasley, R.W. Kay, J. Stringer, P.J. Smith, C. Connaughton, J.N.D. Shephard, Nanosecond laser textured superhydrophobic metallic surfaces and their chemical sensing applications. Appl. Surf. Sci. 357, 248–254 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    L.B. Boinovich, A.M. Emelyanenko, K.A. Emelyanenko, A.G. Domantovsky, A.A. Shiryaev, V. Ta, A. Dunn, T.J. Wasley, R.W. Kay, J. Stringer, P.J. Smith, C. Connaughton, J.D. Shephard, Comment on “Nanosecond laser textured superhydrophobic metallic surfaces and their chemical sensing applications” by Duong. Appl. Surf. Sci. 357, 248–254 (2015)CrossRefGoogle Scholar
  29. 29.
    O. Monnereau et al., Chromium oxides mixtures in PLD fils investigated by Raman spectroscopy, J. Optoelctron. Adv. Mater. 12(8), 1752–1758 (2010)Google Scholar
  30. 30.
    L.J. Oblonsky, T.M. Devine, A surface enhanced Raman spectroscopic study of the passive films formed in borate buffer on iron, nickel, chromium, and stainless steel. Corros. Sci 37(1), 17–41 (1995)CrossRefGoogle Scholar
  31. 31.
    L. Slavov, M.V. Abrashev, T. Merodiiska, Ch Gelev, R.E. Vandenberghe, I.M. Deneva, I. Nedkov, J. Magnet. Magn. Mater. 322, 1904–1911 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    P.V. Jentzsch, L.A. Ramos, V. Ciobota, Hand held Raman spectroscopy for the distinction of essential oils used in the cosmetics industry. Cosmetics 2, 162–176 (2015)CrossRefGoogle Scholar
  33. 33.
    J. Jehlicka, H.G.M. Edwards, A. Oren, Raman Spectrosc. Microbial Pigments 80(11), 3286–3295 (2014)Google Scholar
  34. 34.
    A.J. Sedriks, Effect of alloy composition and microstructure on the passivity of stainless steels. Corros. NACE 15(7), 376–389 (1986)CrossRefGoogle Scholar
  35. 35.
    C.O.A. Olsson, D. Landolt, Passive films on stainless steels- chemistry, structure and growth. ElectrochemicaActa 48, 1093–1104 (2003)CrossRefGoogle Scholar
  36. 36.
    Y.Z.F. Liu, J. Chen, Y. Yuan, Effects of surface quality on corrosion resistance of 316L stainless steel parts manufactured via SLM. J. Laser Appl. 29(2), 1–2 (2017)Google Scholar
  37. 37.
    A.K. Singh, S.R. Suryawanshi, M.A. More, S. Basu, S. Sinha, Field emission study from an array of hierarchical micro-protrusions on stainless steel surface generated by femtosecond pulsed laser irradiation. Appl. Surf. Sci. 396, 1310–1316 (2017)ADSCrossRefGoogle Scholar
  38. 38.
    A.K. Singh, D. Shinde, M.A. More, S. Sinha, Enhanced field emission from nanosecond laser based surface micro-structured stainless steel. Appl. Surf. Sci. 357, 1313–1318 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • A. K. Singh
    • 1
  • B. Sunil Kumar
    • 2
  • P. Jha
    • 3
  • A. Mahanti
    • 2
  • Kulwant Singh
    • 4
  • Vivekanand Kain
    • 2
  • S. Sinha
    • 5
  1. 1.Laser and Plasma Technology DivisionBARCMumbaiIndia
  2. 2.Materials Processing and Corrosion Engineering DivisionBARCMumbaiIndia
  3. 3.Technical Physics DivisionBARCMumbaiIndia
  4. 4.Materials Science DivisionBARCMumbaiIndia
  5. 5.Laser and Plasma Surface Processing SectionBARCMumbaiIndia

Personalised recommendations