Advertisement

Applied Physics A

, 125:82 | Cite as

Laser ablation synthesis of Ag nanoparticles in graphene quantum dots aqueous solution and optical properties of nanocomposite

  • Amir Reza SadrolhosseiniEmail author
  • Suraya Abdul Rashid
  • Suhaidi Shafie
  • Hassan Soleimani
Article
  • 42 Downloads

Abstract

In this study, silver nanoparticles were synthesized in a graphene quantum dots aqueous solution using the laser ablation method. A silver plate was ablated at different times, and silver nanoparticles formed in the graphene quantum dots solution at room temperature. The prepared samples were tested using these analytical methods. The graphene quantum dots surrounded the sphere-shaped silver nanoparticles; particle sizes ranged from 26.76 to 21.61 nm. The silver nanoparticles interacted with the carboxyl and hydroxyl functional groups. The prominent and considerable property of the silver nanoparticles/graphene quantum dots composite was enhancement of the Raman scattering. The obtained scattered Raman intensity was nearly 6 times stronger than pure graphene quantum dots.

References

  1. 1.
    R. Stiufiuc, C. Iacovita, C.M. Lucaciu, G. Stiufiuc, A.G. Dutu, C. Braescu, N. Leopold, Nanoscale Res. Lett. 8, 47 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    M.P. Konrad, A.P. Doherty, S.E.J. Bell, Anal. Chem. 85, 6783 (2013)CrossRefGoogle Scholar
  3. 3.
    G.M. Meheretu, D. Cialla, J. Popp, Int. J. Biochem. Biophys. 2, 63 (2014)Google Scholar
  4. 4.
    Y. Luo, L. Ma, X. Zhang, A. Liang, Z. Jiang, Nanoscale Res. Lett. 10, 230 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    P.J. Rivero, A. Urrutia, J. Goicoechea, I.R. Matias, F.J. Arregui, Sens. Actuators B 187, 40 (2013)CrossRefGoogle Scholar
  6. 6.
    Y.K. Krutyakov, A.A. Kudrynskiy, A.Y. Olenin, G.V. Lisichkin, Russ. Chem. Rev. 77, 233 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    G. Franci, A. Falanga, S. Galdiero, L. Palomba, M. Rai, G. Morelli, M. Galdiero, Molecules 20, 8856 (2015)CrossRefGoogle Scholar
  8. 8.
    J. Natsuki, T. Natsuki, Y. Hashimoto, Int. J. Mater. Sci. Appl. 4(5), 325 (2015)Google Scholar
  9. 9.
    X.-F. Zhang, Z.-G. Liu, W. Shen. S. Gurunathan, Int. J. Mol. Sci. 17, 1534 (2016)CrossRefGoogle Scholar
  10. 10.
    S. Chernousova, M. Epple, Angew. Chem. Int. Ed. 52, 1636 (2013)CrossRefGoogle Scholar
  11. 11.
    C.Y. Li, Y.J. Zhang, M. Wang, Y. Zhang, G. Chen, L. Li, D. Wu, Q. Wang, Biomaterials 35, 393 (2014)CrossRefGoogle Scholar
  12. 12.
    I. Sondi, B. Salopek-Sondi, J. Colloid Interface Sci. 275, 177 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    H. Sun, L. Wu, W. Wei, X. Qu, Mater. Today 16, 11 (2013)CrossRefGoogle Scholar
  14. 14.
    X. Yuan, Z. Liu, Z. Guo, Y. Ji, M. Jin, X. Wang, Nanoscale Res. Lett. 9, 108 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    M. Laurenti, M. Paez-Perez, M. Algarra, P. Alonso-Cristobal, E. Lopez-Cabarcos, D. Mendez-Gonzalez, J. Rubio-Retama, ACS Appl. Mater. Interfaces 8, 12644 (2016)CrossRefGoogle Scholar
  16. 16.
    A.D. Chowdhury, R.-A. Doong, ACS Appl. Mater. Interfaces 8, 21002 (2016)CrossRefGoogle Scholar
  17. 17.
    J. Liu, L. Qin, S.-Z. Kang, G. Li, X. Li, Mater. Des. 123, 32 (2017)CrossRefGoogle Scholar
  18. 18.
    R. Guo, S. Zhou, Y. Li, X. Li, L. Fan, N.H. Voelcker, ACS Appl. Mater. Interfaces 7, 23958 (2015)CrossRefGoogle Scholar
  19. 19.
    Y. Liu, D.Y. Kim, Chem. Commun. 51, 4176 (2015)CrossRefGoogle Scholar
  20. 20.
    V.K. Gupta, N. Mergu, A.K. Singh, Sens. Actutors B 220, 420 (2015)CrossRefGoogle Scholar
  21. 21.
    R.M.F. Batista, S.P.G. Costa, R.M.P. Silva, N.E.M. Lima, M.M.M. Raposo, Dyes Pigm. 102, 293 (2014)CrossRefGoogle Scholar
  22. 22.
    T.-T. Xu, J.-X. Yang, J.-M. Song, J.-S. Chen, H.-L. Niu, C.-J. Mao, S.-Y. Zhang, Y.-H. Shen, Sens. Actuators B 243, 863 (2017)CrossRefGoogle Scholar
  23. 23.
    Z. Huang, Y. Shen, Y. Li, W. Zheng, Y. Xue, C. Qin, B. Zhang, J. Hao, W. Feng, Nanoscale 6, 13043 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    S. Zhuo, M. Shao, S.-T. Lee, ACS Nano 6, 1059 (2012)CrossRefGoogle Scholar
  25. 25.
    E. Hwang, H.M. Hwang, Y. Shin, Y. Yoon, H. Lee, J. Yang, S. Bak, H. Lee, Sci. Rep. 6, 39448 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    Y. Ko, J. Shim, C.-H. Lee, K.S. Lee, H. Cho, K.-T. Lee, D.I. Son, Mater. Lett. 217, 113 (2018)CrossRefGoogle Scholar
  27. 27.
    J. Wang, X. Gao, H. Sun, B. Su, C. Gao, Mater. Lett. 162, 142 (2016)CrossRefGoogle Scholar
  28. 28.
    J. Ge, Y. Li, J. Wang, Y. Pu, W. Xue, X. Liu, J. Alloy. Compd. 663, 166e171 (2016)CrossRefGoogle Scholar
  29. 29.
    S. Chen, Y. Quan, Y.-L. Yu, J.-H. Wang, ACS Biomater. Sci. Eng. 3, 313 (2017)CrossRefGoogle Scholar
  30. 30.
    S. Chen, X. Hai, X.-W. Chen, J.-H. Wang, Anal. Chem. 86, 6689 (2014)CrossRefGoogle Scholar
  31. 31.
    X. Liu, Y. Li, W. Xue, J. Ge, J. Wang, J. Sun, J. Mater. Sci. Technol. 34, 679 (2018)CrossRefGoogle Scholar
  32. 32.
    J. Ge, Y. Li, J. Wang, Y. Pu, W. Xue, X. Liu, J. Alloy. Compd. 663, 166 (2016)CrossRefGoogle Scholar
  33. 33.
    N.T. Ho, H.N. Tien, S.-J. Jang, V. Senthilkumar, Y.C. Park, S. Cho, Y.S. Kim, Sci. Rep. 6, 30327 (2016)ADSCrossRefGoogle Scholar
  34. 34.
    S. Chen, X. Hai, X.W. Chen, J.H. Wang, Anal. Chem. 86, 13, 6689 (2014)CrossRefGoogle Scholar
  35. 35.
    V. Deepak, P.S. Umamaheshwaran, K. Guhan, R.A. Nanthini, B. Krithiga, N.M. Jaithoon, S. Gurunathan, Colloid Surface B 86, 353 (2011)CrossRefGoogle Scholar
  36. 36.
    S. Chen, Y. Quan, Y.-L. Yu, J.-H. Wang, ACS Biomater. Sci. Eng. 3(3), 313 (2017)CrossRefGoogle Scholar
  37. 37.
    N. Peyghambarian, S.W. Koch, A. Mysyrowicz, Introduction to Semiconductor Optics (Prentice Hall, New Jersey, 1993), pp. 53–77Google Scholar
  38. 38.
    J. Homola, Surface plasmon resonance based sensors (Springer, Heidelberg, 2006), pp. 26–31CrossRefGoogle Scholar
  39. 39.
    B. Blonder, Sensing Application of Surface Plasmon Resonance. http://www.eduprograms.seas.harvard.edu/reu05_papers/Blonder_Benjamin.pdf. Accessed 19 Aug 2005
  40. 40.
    A.J. Jaaskelainen, K.E. Peiponen, J.A. Raty, J. Dairy Sci. 84, 38–43 (2001)CrossRefGoogle Scholar
  41. 41.
    R. Zamiri, A. Zakaria, H.A. Ahangar, A.R. Sadrolhosseini, M.A. Mahdi, Int. J. Mol. Sci. 11, 4764 (2010)CrossRefGoogle Scholar
  42. 42.
    W. Chen, L. Yan, P.R. Bangal, J. Phys. Chem. C 114, 19885 (2010)CrossRefGoogle Scholar
  43. 43.
    J. Li, H. Lin, Z. Yang, J. Li, Carbon 49, 3024 (2011)CrossRefGoogle Scholar
  44. 44.
    S. Stankovich, D.A. Dikin, R.D. Piner, K. A.Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Carbon 45, 1558 (2007)CrossRefGoogle Scholar
  45. 45.
    J.J. Mock, M. Barbic, D.R. Smith, D.A. Schultz, S. Schultz, J. Chem. Phys. 116, 15, 6755 (2002)ADSCrossRefGoogle Scholar
  46. 46.
    K.N. Kanipe, P.P.F. Chidester, G.D. Stucky, M. Moskovits, ACS Nano 10(8), 7566 (2016)CrossRefGoogle Scholar
  47. 47.
    L.K. Shrestha, J.S. Wi, J. Williams, M. Akada, K. Ariga, J. Nanosci. Nanotechnol. 14(3), 2245 (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Amir Reza Sadrolhosseini
    • 1
    • 2
    Email author
  • Suraya Abdul Rashid
    • 2
  • Suhaidi Shafie
    • 1
  • Hassan Soleimani
    • 3
  1. 1.Functional Device Laboratory (FDL), Institute of Advance TechnologyUniversiti Putra MalaysiaSerdangMalaysia
  2. 2.Materials Processing and Technology Laboratory (MPTL), Nanomaterials and Nanotechnology Group, Institute of Advanced TechnologyUniversiti Putra MalaysiaSerdangMalaysia
  3. 3.Department of Fundamental and Applied ScienceUniversiti Teknologi PETRONASSeri IskandarMalaysia

Personalised recommendations