Advertisement

Applied Physics A

, 124:791 | Cite as

Effect of surface area of carbon nanotubes on membrane performance for effective water desalination

  • Javad Eslami
  • Yaser Abdi
  • Anousha Khamsavi
  • Zahra EbrahimNataj
  • Asieh S. KazemiEmail author
Article
  • 83 Downloads

Abstract

Carbon nanotubes (CNTs) have emerged as promising novel membrane materials for enhancing desalination performance. So far, the salt rejection mechanism of these materials has been through the narrow diameter of these nanotubes that exclude salt and allow the transfer of water. It is challenging to control the inner diameter of all the nanotubes and there is the problem of low permeation after several measurements due to the narrow channels that water molecules have to travel through. There is also the problem of fouling after a few measurements, because even if a low percentage of ions leak through some of the channels, they can easily get stuck there and eventually block the channels. Here, the rejection mechanism of various CNTs, grown on Si hole arrays, is based on the effective surface area of the nanotubes. The rejection of NaCl and MgSO4 ions and the permeability of water were measured across CNT structures grown on micro-fabricated Si hole arrays in a gravity-driven pressure setup. The electric conductivity of the feed and permeate solutions was measured and showed acceptable values for salt rejection and high values for water permeation. A comparison between the performance of bare Si surface and those decorated with CNTs shows the effectiveness of surface modification with CNTs in salt rejection.

Notes

Acknowledgements

Asieh S. Kazemi would like to acknowledge National Elites Foundation No. 146/62141 in Iran for the financial support they provided towards this work.

Supplementary material

339_2018_2214_MOESM1_ESM.docx (512 kb)
Supplementary material 1 (DOCX 512 KB)

References

  1. 1.
    L.F. Greenlee, D.F. Lawler, B.D. Freeman, B. Marrot, P. Moulin, Reverse osmosis desalination: water sources, technology, and today’s challenges. Water Res. 43(9), 2317–2348 (2009)CrossRefGoogle Scholar
  2. 2.
    A. Morelos-Gomez, R. Cruz-Silva, H. Muramatsu, J. Ortiz-Medina, T. Araki, T. Fukuyo, S. Tejima, K. Takeuchi, T. Hayashi, M. Terrones, M. Endo, Effective NaCl and dye rejection of hybrid graphene oxide/graphene layered membranes. Nat. Nanotechnol. 12, 1083–1088 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    Y. You, V. Sahajwalla, M. Yoshimura, R.K. Joshi, Graphene and graphene oxide for desalination. Nanoscale 8, 117–119 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    S.P. Surwade, S.N. Smirnov, I. Vlassiouk, R.R. Unocic, G.M. Veith, S. Dai, S.M. Mahurin, Water desalination using nanoporous single-layer graphene. Nat. Nanotechnol. 10, 459–464 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    A.S. Kazemi, S.M. Hosseini, Y. Abdi, Desalination (2018).  https://doi.org/10.1016/j.desal.2017.12.050 CrossRefGoogle Scholar
  6. 6.
    A.S. Kazemi, Y. Abdi, J. Eslami, R. Das, Desalination (2018).  https://doi.org/10.1016/j.desal.2018.03.003 CrossRefGoogle Scholar
  7. 7.
    C.S. Ong, P.S. Goh, W.J. Lau, N. Misdan, A.F. Ismail, Nanomaterials for biofouling and scaling mitigation of thin film composite membrane: a review. Desalination 393, 2–15 (2016)CrossRefGoogle Scholar
  8. 8.
    B. Radha, A. Esfandiar, F.C. Wang, A.P. Rooney, K. Gopinadhan, A. Keerthi, A. Mishchenko, A. Janardanan, P. Blake, L. Fumagalli, M. Lozada-Hidalgo, S. Garaj, S.J. Haigh, I.V. Grigorieva, H.A. Wu, A.K. Geim, Molecular transport through capillaries made with atomic-scale precision. Nature 538, 222–225 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    J.K. Holt, H. Gyu Park, Y. Wang, M. Stadermann, A.B. Artyukhin, C.P. Grigoropoulos, A. Noy, O. Bakajin, Fast mass transport through sub–2-nanometer carbon nanotubes. Science 312, 1034 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    H. Matsumoto, S. Tsuruoka, Y. Hayashi, K. Abe, K. Hata, S. Zhang, Y. Saito, M. Aiba, T. Tokunaga, T. Iijima, T. Hayashi, H. Inoue, G.A.J. Amaratunga, Water transport phenomena through membranes consisting of vertically-aligned double-walled carbon nanotube array. Carbon 120, 358–365 (2017)CrossRefGoogle Scholar
  11. 11.
    S. Trivedi, K. Alameh, Effect of vertically aligned carbon nanotube density on the water flux and salt rejection in desalination membranes. Springer Plus 5, 1158 (2016)CrossRefGoogle Scholar
  12. 12.
    S.S. Madaeni, S. Zinadini, V. Vatanpour, Preparation of superhydrophobic nanofiltration membrane by embedding multiwalled carbon nanotube and polydimethylsiloxane in pores of microfiltration membrane. Sep. Purif. Technol. 11, 98–107 (2013)CrossRefGoogle Scholar
  13. 13.
    M. Jahanshahi, A. Rahimpour, M. Peyravi, Developing thin film composite poly(piperazine-amide) and poly(vinyl-alcohol) nanofiltration membranes. Desalination 257, 129–136 (2010)CrossRefGoogle Scholar
  14. 14.
    R. Das, H.S.B. Abd, M.E. Ali, A.F. Ismail, M.S.M. Annuar, S. Ramakrishna, Multifunctional carbon nanotubes in water treatment: the present, past and future. Desalination 354, 160–179 (2014)CrossRefGoogle Scholar
  15. 15.
    R.S. Hebbar, A.M. Isloor, A.M. Asiri, Carbon nanotube- and graphene-based advanced membrane materials for desalination. Environ. Chem. Lett. 15(4), 643–671 (2017)CrossRefGoogle Scholar
  16. 16.
    P.S. Goh, A.F. Ismail, B.C. Ng, Carbon nanotubes for desalination: performance evaluation and current hurdles. Desalination 308, 2–14 (2013)CrossRefGoogle Scholar
  17. 17.
    J.K. Holt, Carbon nanotubes and nanofluidic transport. Adv. Mater. 21, 3542–3550 (2009)CrossRefGoogle Scholar
  18. 18.
    C.H. Ahn, Y. Baek, C. Lee, S.O. Kim, S. Kim, S. Lee, Carbon nanotube-based membranes: fabrication and application to desalination. J. Ind. Eng. Chem. 18, 1551–1559 (2012)CrossRefGoogle Scholar
  19. 19.
    K. Sears, K.L. Dume´e, J. Schu¨tz, M. She, C. Huynh, S. Hawkins, Recent developments in carbon nanotube membranes for water purification and gas separation. Materials (Basel) 3, 127–149 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    G. Hummer, J.C. Rasaiah, J.P. Noworyta, Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414, 188–190 (2001)ADSCrossRefGoogle Scholar
  21. 21.
    A.I. Kolesnikov, J.-M. Zanotti, C.-K. Loong, P. Thiyagarajan, A.P. Moravsky, R.O. Loutfy, Anomalously soft dynamics of water in a nanotube: a revelation of nanoscale confinement. Phys. Rev. Lett. 93, 35503 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    X. Wang, X. Chen, K. Yoon, D. Fang, B.S. Hsiao, B. Chu, High flux filtration medium based on nanofibrous substrate with hydrophilic nanocomposite coating. Environ. Sci. Technol. 39, 7684–7691 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    K. Gethard, O. Sae-Khow, S. Mitra, Water desalination using carbon-nanotube-enhanced membrane distillation. ACS Appl. Mater. Interfaces 3, 110–114 (2011)CrossRefGoogle Scholar
  24. 24.
    H.A. Shawky, S.-R. Chae, S. Lin, M.R. Wiesner, Synthesis and characterization of a carbon nanotube/polymer nanocomposite membrane for water treatment. Desalination 272, 46–50 (2011)CrossRefGoogle Scholar
  25. 25.
    Z. Zhao, Z. Yang, Y. Hu, J. Li, X. Fan, Multiple functionalization of multi-walled carbon nanotubes with carboxyl and amino groups. Appl. Surf. Sci. 276, 476–481 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    M. Son, H.-G. Choi, L. Liu, E. Celik, H. Park, H. Choi, Efficacy of carbon nanotube positioning in the polyethersulfone support layer on the performance of thin-film composite membrane for desalination. Chem. Eng. J. 266, 376–384 (2015)CrossRefGoogle Scholar
  27. 27.
    H.J. Kim, K. Choi, Y. Baek, D.-G. Kim, J. Shim, J. Yoon, J.-C. Lee, High performance reverse osmosis CNT/polyamide nanocomposite membrane by controlled interfacial interactions. ACS Appl. Mater. Interfaces 6(4), 2819–2829 (2014)CrossRefGoogle Scholar
  28. 28.
    M.S. Mauter, M. Elimelech, Environmental applications of carbon-based nanomaterials. Environ. Sci. Technol. 42, 5843–5859 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    P.S. Goh, A.F. Ismail, N. Hilal, Nano-enabled membranes technology: sustainable and revolutionary solutions for membrane desalination. Desalination 380, 100–104 (2016)CrossRefGoogle Scholar
  30. 30.
    R. Saito, M. Hofmann, G. Dresselhaus, A. Jorio, M.S. Dresselhaus, Raman spectroscopy of graphene and carbon nanotubes. Adv. Phys. 60(3), 413–550 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    T. Odedairo, J. Ma, Y. Gu, J. Chen, X.S. Zhao, Z. Zhu, One-pot synthesis of carbon nanotube–graphene hybrids via syngas production. J. Mater. Chem. A 2, 1418 (2014)CrossRefGoogle Scholar
  32. 32.
    E. Dervishi, Z. Li, F. Watanabe, Y. Xu, V. Saini, A.R. Biris, A.S. Biris, J. Mater. Chem. 19, 3004–3012 (2009)CrossRefGoogle Scholar
  33. 33.
    D. Geng, Y. Cheng, Y. Chen, Y. Li, R. Li, X.L. Sun, S.Y. Ye, S. Knights, Energy Environ. Sci. 4, 760–764 (2011)CrossRefGoogle Scholar
  34. 34.
    Y. Abdi, J. Koohsorkhi, J. Derakhshandeh, S. Mohajerzadeh, H. Hoseinzadegan, M.D. Robertson, J.C. Bennett, X. Wu, H. Radamson, PECVD-grown carbon nanotubes on silicon substrates with a nickel-seeded tip-growth structure. Mater. Sci. Eng. C 26, 1219–1223 (2006)CrossRefGoogle Scholar
  35. 35.
    M. Chhowalla, K.B.K. Teo, C. Ducati, N.L. Rupesinghe, G.A.J. Amaratunga, A.C. Ferrari, Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. J. Appl. Phys. 90(10), 5308–5317 (2001)ADSCrossRefGoogle Scholar
  36. 36.
    L. Wang, M.S.H. Boutilier, P.K. Kidambi, D. Jang, N.G. Hadjiconstantinou, R. Karnik, Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes. Nat. Nanotech. 12, 509–522 (2017)ADSCrossRefGoogle Scholar
  37. 37.
    W.R. Cannon, B.M. Pettitt, J.A. McCammon, Sulfate anion in water: model structural, thermodynamic. J. Phys. Chem. 98, 6225–6230 (1994)CrossRefGoogle Scholar
  38. 38.
    J. Burgess, Metal Ions in Solution (Ellis Horwood, New York, 1978)Google Scholar
  39. 39.
    Y. Baek, C. Kim, D.K. Seo, T. Kim, J.S. Lee, Y.H. Kim, High performance and antifouling vertically aligned carbon nanotube membrane for water purification. J. Membr. Sci. 460, 171–177 (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Nanophysics Research Laboratory, Department of PhysicsUniversity of TehranTehranIran

Personalised recommendations