Applied Physics A

, 124:785 | Cite as

Enhanced grain-boundary diffusion on power loss of low-temperature-fired NiCuZn ferrites for high-frequency power supplies

  • Yan YangEmail author
  • Huaiwu ZhangEmail author
  • Jie Li
  • Gongwen Gan
  • Gang Wang
  • Dandan Wen


NiCuZn ferrite ceramics with high permeability, low power loss and excellent thermal stability are vital materials for high-frequency power devices. This paper analyzed grains growth and grain-boundary diffusion of Ni0.2Cu0.2Zn0.6Fe2O4 ferrite ceramics at lower temperatures by adding optimized additives. X-ray diffraction reveals that the samples are pure spinel ferrite phase sintered at low temperatures. SEM images indicate that uniform and compact NiCuZn ferrite ceramics were obtained at 920 °C for 4 h, which is very advantageous for low-temperature co-fired ceramic (LTCC) technology. In addition, the ferrite ceramics with higher permeability (~ 411 @ 1 MHz), lower power loss in high frequency (~ 442 kW/m3 @ 7 MHz) and good thermal stability were synthesized by controlling grains growth and grain-boundary diffusion. The results indicate that this ferrite ceramic material is a good candidate for the application of miniaturized power electronics in high frequency.



This work was supported by the National Nature Science Foundation of China (Nos. 51602036, 6167118 and 51672036), and the key projects of Sichuan Province (Nos. 2017GZ0408 and 2017GZ0415), and the Sichuan Science and Technology Project (Grant No. 18MZGC0025), and the key projects of Chengdu (2016-HM01-00225-SF), and Guizhou province key R&D program [2016]3011.


  1. 1.
    Y. Yan, K.D.T. Ngo, D. Hou, M. Mu, Y. Mei, G.-Q. Lu, J. Electron. Mater. 44, 3788 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    K. Praveena, H.W. Chen, H.L. Liu, K. Sadhana, S.R. Murthy, J. Magn. Magn. Mater. 420, 129 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    K. Sun, G. Wu, B. Wang, Q. Zhong, Y. Yang, Z. Yu, C. Wu, P. Wei, X. Jiang, Z. Lan, J. Alloy. Compd. 650, 363 (2015)CrossRefGoogle Scholar
  4. 4.
    A. Fujita, S. Gotoh, J. Appl. Phys. 93, 7477 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    B.P. Rao, C.O. Kim, C. Kim, Mater. Lett. 61, 1601 (2007)CrossRefGoogle Scholar
  6. 6.
    G. Kogias, V.T. Zaspalis, Ceram. Int. 42, 7639 (2016)CrossRefGoogle Scholar
  7. 7.
    P. Andalib, Y.J. Chen, V.G. Harris, IEEE Magn. Lett. 9, 5 (2018)CrossRefGoogle Scholar
  8. 8.
    K. Takadate, Y. Yamamoto, A. Makino, T. Yamaguchi, I. Sasada, J. Appl. Phys. 83, 6861 (1998)ADSCrossRefGoogle Scholar
  9. 9.
    K. Gheisari, S. Javadpour, H. Shokrollahi, B. Hashemi, Magnetic losses of the soft magnetic composites consisting of iron and Ni-Zn ferrite. J. Magn. Magn. Mater. 320, 1544–1548 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    E.E. Ateia, M. Farag, Appl. Phys. A Mater. Sci. Process. 124, 10 (2018)CrossRefGoogle Scholar
  11. 11.
    G.D. Nipan, V.A. Ketsko, T.N. Kol’tsova, M.A. Kop’eva, A.I. Stognii, A.V. Trukhanov, Inorg. Mater. 46, 1019 (2010)CrossRefGoogle Scholar
  12. 12.
    G.D. Nipan, V.A. Ketsko, A.I. Stognij, A.V. Trukhanov, T.N. Kol’Tsova, E.N. Beresnev, M.A. Kop’Eva, L.V. Elesina, N.T. Kuznetsov, Dokl. Phys. Chem. 430, 39 (2010)CrossRefGoogle Scholar
  13. 13.
    B.P. Rao, C. Kim, J. Mater. Sci. 42, 8433 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    H. Su, H.W. Zhang, X.L. Tang, Y.L. Jing, J. Appl. Phys. 103, 5 (2008)Google Scholar
  15. 15.
    T. Zhou, H. Zhang, L. Jia, Y. Liao, Z. Zhong, F. Bai, H. Su, J. Li, L. Jin, C. Liu, J. Alloy. Compd. 620, 421 (2015)CrossRefGoogle Scholar
  16. 16.
    Y.L. Liao, F. Xu, D.N. Zhang, T.C. Zhou, Q. Wang, X.Y. Wang, L.J. Jia, J. Li, H. Su, Z.Y. Zhong, H.W. Zhang, J. Am. Ceram. Soc. 98, 2556 (2015)CrossRefGoogle Scholar
  17. 17.
    S. Vyazovkin, J. Comput. Chem. 18, 393 (1997)CrossRefGoogle Scholar
  18. 18.
    S.A. Mazen, N.I. Abu-Elsaad, Appl. Phys. A Mater. Sci. Process. 122, 1 (2016)CrossRefGoogle Scholar
  19. 19.
    A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, V.V. Korovushkin, V.A. Turchenko, P. Thakur, A. Thakur, Y. Yang, D.A. Vinnik, E.S. Yakovenko, L.Y. Matzui, E.L. Trukhanova, S.V. Trukhanov, J. Alloy. Compd. 754, 247 (2018)CrossRefGoogle Scholar
  20. 20.
    S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, A.V. Trukhanov, V.A. Turchenko, D.I. Tishkevich, E.L. Trukhanova, V.V. Oleynik, O.S. Yakovenko, L.Y. Matzui, D.A. Vinnik, J. Magn. Magn. Mater. 442, 300 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    M.I. Mendelson, J. Am. Ceram. Soc. 52, 443 (1969)CrossRefGoogle Scholar
  22. 22.
    F. Xie, L. Jia, F. Xu, J. Li, G. Gan, H. Zhang, Ceram. Int. (2018)Google Scholar
  23. 23.
    F. Xu, Y. Liao, D. Zhang, T. Zhou, J. Li, G. Gan, H. Zhang, Inorg. Chem. 56, 4512 (2017)CrossRefGoogle Scholar
  24. 24.
    H. Su, X. Tang, H. Zhang, Z. Zhong, J. Shen, Sintering dense NiZn ferrite by two-step sintering process, J. Appl. Phys. 109 (2011)CrossRefGoogle Scholar
  25. 25.
    Y. Yang, H. Zhang, J. Li, F. Xu, G. Gan, D. Wen, Ceram. Int. 44, 10545 (2018)CrossRefGoogle Scholar
  26. 26.
    S.Y.R. Lopez, J. Ceram. Process. Res. 12, 228 (2011)Google Scholar
  27. 27.
    S.J.L. Kang, Y.I. Jung, Acta Mater. 52, 4573 (2004)CrossRefGoogle Scholar
  28. 28.
    M.M. Seabaugh, G.L. Messing, M.D. Vaudin, J. Am. Ceram. Soc. 83, 3109 (2000)CrossRefGoogle Scholar
  29. 29.
    J.D. Wang, R. Raj, J. Am. Ceram. Soc. 74, 1959 (1991)CrossRefGoogle Scholar
  30. 30.
    T. Paul, S.P. Harimkar, Scr. Mater. 126, 37 (2017)CrossRefGoogle Scholar
  31. 31.
    Y. Liao, F. Xu, D. Zhang, T. Zhou, Q. Wang, X. Wang, L. Jia, J. Li, H. Su, Z. Zhong, H. Zhang, J. Am. Ceram. Soc. 98, 2556 (2015)CrossRefGoogle Scholar
  32. 32.
    H. Su, H.W. Zhang, X.L. Tang, Y.L. Liu, J. Mater. Sci. 42, 2849 (2007)ADSCrossRefGoogle Scholar
  33. 33.
    D.S. Klygach, M.G. Vakhitov, D.A. Vinnik, A.V. Bezborodov, S.A. Gudkova, V.E. Zhivulin, D.A. Zherebtsov, C.P. Sakthidharan, S.V. Trukhanov, A.V. Trukhanov, J. Magn. Magn. Mater. (2018)Google Scholar
  34. 34.
    M.R. Syue, F.J. Wei, C.S. Chou, C.M. Fu, Thin Solid Films 519, 8303 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    Y. Liao, F. Xu, D. Zhang, T. Zhou, Q. Wang, X. Wang, L. Jia, J. Li, H. Su, Z. Zhong, J. Am. Ceram. Soc. 98, 2556 (2015)CrossRefGoogle Scholar
  36. 36.
    D.A. Vinnik, D.S. Klygach, V.E. Zhivulin, A.I. Malkin, M.G. Vakhitov, S.A. Gudkova, D.M. Galimov, D.A. Zherebtsov, E.A. Trofimov, N.S. Knyazev, J. Alloy. Compd. 755, 177 (2018)CrossRefGoogle Scholar
  37. 37.
    S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, A.V. Trukhanov, V.A. Turchenko, D.I. Tishkevich, E.L. Trukhanova, O.S. Yakovenko, L.Y. Matzui, Dalton. Trans. 46 (2017)Google Scholar
  38. 38.
    T.Y. Byun, S.C. Byeon, K.S. Hong, K.K. Chang, IEEE Trans. Magn. 35, FE08 (1999)Google Scholar
  39. 39.
    B. Parvatheeswara, C. Kim, J. Mater. Sci. 42, 8433 (2007)CrossRefGoogle Scholar
  40. 40.
    Z. Wei, P. Zheng, L. Zheng, L. Shao, J. Hu, J. Zhou, H. Qin, J. Mater. Sci. Mater. Electron. 27, 6048 (2016)CrossRefGoogle Scholar
  41. 41.
    J.I. Haining, Z. Lan, Y.U. Zhong, L.I. Lezhong, K. Sun, H. Zhang, Mater. Rev. (2008)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Electronic Thin Film and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.College of Communication EngineeringChengdu University of Information TechnologyChengduChina

Personalised recommendations