Advertisement

Applied Physics A

, 124:788 | Cite as

Development of micro-hotplate and its reliability for gas sensing applications

  • Mahanth Prasad
  • Partha S. Dutta
Article
  • 61 Downloads

Abstract

This paper presents the development of a double spiral micro-heater and its reliability testing for gas sensing applications. The design and simulation of the micro-hotplate was carried out using MEMS-CAD Tool COVENTORWARE. The micro-hotplate structure consists of a 1.0 µm-thick thermally grown SiO2 membrane of area 600 µm × 600 µm over which a double spiral platinum resistor has been fabricated. A platinum resistor of 117 Ω is fabricated on SiO2 layer using lift-off technique. The platinum deposition was carried out using DC sputtering technique. The hotplate membrane release was accomplished by using both wet and dry etching of silicon. The temperature coefficient of resistance (TCR) of platinum as measured was found to be 2.19 × 10−3/°C. This value has been used to estimate the micro-hotplate temperature. The micro-hotplate consumes only 50 mW power when heated up to 500 °C. The results of reliability testing of fabricated device using pulse mode of operation, maximum current capability and thermal stability have been presented. The hotplate has been shown to continuously operate at 500 °C for more than 4 h and sustain maximum current of 23 mA and 130 cycles of pulse mode operation without any damage to the structure.

Notes

Acknowledgements

The authors wish to thank the Director, CSIR-CEERI, Pilani for encouragement and guidance. They are also thankful to all members of Smart Sensor Area for helpful discussions, technical assistance and support.

References

  1. 1.
    M.Y. Afridi, J.S. Suehle, M.E. Zaghloul, D.W. Berning, A.R. Hefner, R.E. Cavicchi, C.J. Taylor, A monolithic CMOS microhotplate based gas sensor system. IEEE Sens. J 2(6), 644–655 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    S.Z. Ali, F. Udrea, W.I. Milne, J.W. Gardner, Tungsten-based SOI microhotplates for smart gas sensors. J. Microelectromech. Syst. 17(6), 1408–1417 (2008)CrossRefGoogle Scholar
  3. 3.
    S. Astié, A.M. Gué, E. Scheid, J.P. Guillemet, Design of low power SnO2 gas sensor integrated on silicon oxynitride membrane. Sens. Actuators B 67, 84–88 (2000)CrossRefGoogle Scholar
  4. 4.
    E. Barborini, S. Vinati, M. Leccardi, P. Repetto, G. Bertolini, O. Rorato, L. Lorenzelli, M. Decarli, V. Guarnieri, C. Ducati, P. Milani, Batch fabrication of metal oxide sensors on micro-hotplates. J. Micromech. Microeng. 18(5), 1–7 (2008)CrossRefGoogle Scholar
  5. 5.
    M. Baroncini, P. Placidi, G.C. Cardinali, A. Scorzoni, Thermal characterization of a microheater for micromachined gas sensors. Sens. Actuators A Phys. 115(1), 8–14 (2004)CrossRefGoogle Scholar
  6. 6.
    J.C. Belmonte, J. Puigcorbe, J. Arbiol, A. Vila, J.R. Morante, N. Sabate, I. Gracia, C. Cane, High-temperature low-power performing micromachined suspended micro-hotplate for gas sensing applications. Sens. Actuators B Chem. 114(2), 826–835 (2006)CrossRefGoogle Scholar
  7. 7.
    G. Benn, Design of a silicon carbide micro-hotplate geometry for high temperature chemical sensing. M.S. thesis, MIT, Cambridge, 2001Google Scholar
  8. 8.
    P. Bhattacharyya, Technological journey towards reliable microheater development for MEMS gas sensors: a review. IEEE Trans. Device Mater. Reliab. 14(2), 589–599 (2014)CrossRefGoogle Scholar
  9. 9.
    J.M. Bosc, Y. Guo, V. Sarihan, T. Lee, Accelerated life testing for micro-chemical sensors. IEEE Trans. Reliab. 47(2), 135–141 (1998)CrossRefGoogle Scholar
  10. 10.
    D. Briand, S. Colin, J. Courbat, S. Raible, J. Kappler, N.F. de Rooij, Integration of MOX gas sensors on polymide hotplates. Sens. Actuators B Chem. 130(1), 430–435 (2008)CrossRefGoogle Scholar
  11. 11.
    D. Briand, S. Heimgartner, M. Gretillat, B. Schoot, N.F. Rooij, Thermal optimization of microhotplates that have a silicon island. J. Micromech. Microeng. 12(6), 971–978 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    U. Dibbern, A substrate for thin-film gas sensors in microelectronic technology. Sens. Actuators B Chem. 2(1), 63–70 (1990)CrossRefGoogle Scholar
  13. 13.
    I. Elmi, S. Zampolli, E. Cozzani, M. Passini, G.C. Cardinali, M. Severi, Development of ultra low power consumption hotplates for gas sensing applications, in Proc. IEEE Sensors, pp. 243–246 (2006)Google Scholar
  14. 14.
    A. Friedberger, P. Kreisl, E. Rose, G. Muller, G. Kuhner, J. Wollenstein, H. Bottner, Micromechanical fabrication of robust low-power metal oxide gas sensors. Sens. Actuators B 93, 345–349 (2003)CrossRefGoogle Scholar
  15. 15.
    P. Fujres, C. Ducso, M. Adam, J. Zettner, I. Barsony, Thermal characterization of micro-hotplates used in sensor structures. Superlattices Microstruct. 35(3–6), 455–464 (2004)ADSGoogle Scholar
  16. 16.
    K.G. Girija, S. Chakraborty, M. Menaka, R.K. Vatsa, A. Topkar, Low-cost surface micromachined microhotplates for chemiresistive gas sensors. Microsyst. Technol. 24(8), 3291 (2018) (p 7) CrossRefGoogle Scholar
  17. 17.
    M. Graf, D. Barrettino, H.P. Baltes, A. Hierlemann, CMOS Hotplate Chemical Microsensors (Springer, Berlin, 2007)Google Scholar
  18. 18.
    M. Graf, D. Barrettino, K.U. Kirstein, A. Hierlemann, CMOS microhotplate sensor system for operating temperatures up to 500 °C. Sens. Actuators B 117, 346–352 (2006)CrossRefGoogle Scholar
  19. 19.
    B. Guo, A. Bermak, P.C.H. Chan, G. Yan, An integrated surface micromachined convex microhotplate structure for tin oxide gas sensor array. IEEE Sens. J 7(12), 1720–1726 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    E.E. Karpov, E.F. Karpov, A. Suchkov, S. Mironov, A. Baranov, V. Sleptsov, L. Calliari, Energy efficient planar catalytic sensor for methane measurement. Sens. Actuators A Phys. 194, 176–180 (2013)CrossRefGoogle Scholar
  21. 21.
    H.J. Kim, J.H. Lee, Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sens. Actuators B 192(1), 607–627 (2013)Google Scholar
  22. 22.
    L. Kulhari, P.K. Khanna, Design, simulation and fabrication of LTCC-based microhotplate for gas sensor applications. Microsyst. Technol. 24, 2169–2175 (2018)CrossRefGoogle Scholar
  23. 23.
    D.S. Lee, S.W. Ban, M. Lee, D.D. Lee, Micro gas sensor array with neural network for recognizing combustible leakage gases. IEEE Sens. J. 5(3), 530–536 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    P. Maccagnani, R. Angelucci, P. Pozzi, A. Poggi, L. Dori, G.C. Cardinali, P. Negrini, Thick oxidised porous silicon layer as a thermoinsulating membrane for high-temperature operating thin-and thick-film gas sensors. Sens. Actuators B 49, 22–29 (1998)CrossRefGoogle Scholar
  25. 25.
    L. Mele, F. Santagata, E. Iervolino, M. Mihailovic, T. Rossi, A.T. Tran, H. Schellevis, J.F. Creemer, P.M. Sarro (2012), A molybdenum MEMS microhotplate for high temperature operation, Sens. Actuators A 188, 173–180CrossRefGoogle Scholar
  26. 26.
    Y. Mo, Y. Okawa, K. Inoue, K. Natukawa, Low-voltage and low power optimization of micro-heater and its on-chip drive circuitry for gas sensor array. Sens. Actuators A Phys. 100(1), 94–101 (2002)CrossRefGoogle Scholar
  27. 27.
    A. Mozalev, R. Calavi, R.M. Va´zquez, I. Gra`cia, C. Cane, X. Correig, X. Vilanova, F.G. Guirado, J.H. lek, E. Llobet (2013), MEMS-microhotplate-based hydrogen gas sensor utilizing the nanostructured porous-anodic-alumina-supported WO3 active layer, Int. J. Hydrog. Energy 38, 8011–8021CrossRefGoogle Scholar
  28. 28.
    K. Oblova, I. Anastasia, S. Sergey, S. Nikolay, L. Alexandr, V. Alexey, S. Andrey, Fabrication of microhotplates based on laser micromachining of zirconium oxide. Phys. Proc. 72, 485–489 (2015)CrossRefGoogle Scholar
  29. 29.
    A. Oprea, J. Courbat, N. Barsan, D. Briand, N.F. de Rooij, U. Weimar, Temperature, humidity and gas sensors integrated on plastic foil for low power applications. Sens. Actuators B 140, 227–232 (2009)CrossRefGoogle Scholar
  30. 30.
    R. Phatthanakun, P. Deelda, W. Pummara, C. Sriphung, C. Pantong, N. Chomnawang, Design and fabrication of thin-film aluminum microheater and nickel temperature sensor, in Proc. IEEE NEMS, Kyoto, pp. 112–115 (2012)Google Scholar
  31. 31.
    M. Prasad, Design, development and reliability testing of a low power bridge-type micromachined hotplate. J. Microelectron. Reliab. 55(06), 937–944 (2015)CrossRefGoogle Scholar
  32. 32.
    M. Prasad, R.P. Yadav, V. Sahula, V.K. Khanna, FEM simulation of platinum-based microhotplate using different dielectric membranes for gas sensing applications. J. Sens. Rev. 32(1), 59–65 (2012)CrossRefGoogle Scholar
  33. 33.
    C. Rossi, P.T. Boyer, D. Estbve, Realization and performance of thin SiO2, SiNx membrane for microheater applications. Sens. Actuators A 64, 241–245 (1998)CrossRefGoogle Scholar
  34. 34.
    J. Sama, G. Domenech, R.R. Guillem, S. Albert, S. Michael, S. Barth, J. Santander, C. Calaza, I. Gracia (2017), Low temperature humidity sensor based on Ge nanowires selectively grown on suspended microhotplates, Sens. Actuators B 243, 669–677 (p 9) CrossRefGoogle Scholar
  35. 35.
    F. Samaeifar, A. Afifi, H. Abdollahi, Simple fabrication and characterization of a platinum microhotplate based on suspended membrane structure. Exp. Tech. 40, 755–763 (2016)CrossRefGoogle Scholar
  36. 36.
    N.N. Samotaev, B.I. Podlepetsky, A.A. Vasiliev, A.V. Pisliakov, A.V. Sokolov, Metal-oxide gas sensor high-selective to ammonia. Autom. Remote Control 74, 308–312 (2013)CrossRefGoogle Scholar
  37. 37.
    T. Seiyama, A. Kato, K. Fujushi, M. Nagatani, A new detector for gaseous components using semiconductive thin films. Anal. Chem. 34(11), 1502–1503 (Oct. 1962)CrossRefGoogle Scholar
  38. 38.
    J.C. Shim, G.S. Chung, Fabrication and Characteristics of Pt/ZnO NO Sensor Integrated SiC Micro Heater, in IEEE Sensors Conference, pp. 350–353 (2010)Google Scholar
  39. 39.
    O. Sidek, M.Z. Ishak, M.A. Khalid, M.Z. Abu Bakar, M.A. Miskam, Effect of heater geometry on the high temperature distribution on a MEMS microhotplate. in IEEE, 3rd Asia Symposium on Quality Electronic Design (2011)Google Scholar
  40. 40.
    I. Simon, I.N. Barsan, M. Bauer, U. Weimar, Micromachined metal oxide gas sensors: opportunities to improve sensor performance. Sens. Actuators B Chem. 73(1), 1–26 (2001)CrossRefGoogle Scholar
  41. 41.
    R.M. Tiggelaar, Silicon-based microreactors for high-temperature heterogeneous partial oxidation reactions. Ph.D. dissertation. Univ. Twente, Enschede, 2004Google Scholar
  42. 42.
    G. Velmathi, N. Ramshanker, S. Mohan, Design, electro-thermal simulation and geometrical optimization of double spiral shaped microheater on a suspended membrane for gas sensing, in Proc. 36th Annu. Conf. IEEE Ind. Electron. Soc., pp. 1258–1262 (2010)Google Scholar
  43. 43.
    D. Vincenzi, M.A. Butturi, V. Guidi, M.C. Carotta, G. Martinelli, V. Guarnieri, S. Brida, B. Margesin, F. Giacomozzi, M. Zen, G.U. Pignatel, A.A. Vasiliev, A.V. Pisliakov, Development of a low-power thick-film gas sensor deposited by screen-printing technique onto a micromachined hotplate. Sens. Actuators B Chem. 77, 95–99 (2001)CrossRefGoogle Scholar
  44. 44.
    J. Wang, Z.A. Tang, A CMOS-compatible temperature sensor based on the gaseous thermal conduction dependent on temperature. Sens. Actuators A 176, 72–77 (2012)CrossRefGoogle Scholar
  45. 45.
    L. Xu, T. Li, X. Gao, Y. Wang, Development of a reliable micro-hotplate with low power consumption. IEEE Sens. J. 11(4), 913–919 (2011)ADSCrossRefGoogle Scholar
  46. 46.
    Q. Zhou, A. Sussman, J. Chang, J. Dong, A. Zettl, W. Mickelson, Fast response integrated MEMS microheaters for ultra low power gas detection. Sens. Actuators A Phys. 223, 67–75 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Transducers and Actuators GroupCSIR-Central Electronics Engineering Research Institute (CEERI)PilaniIndia
  2. 2.Electrical, Computer and Systems Engineering DepartmentRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations