Applied Physics A

, 124:786 | Cite as

Chemical warfare agents’ degradation on Fe–Cu codoped TiO2 nanoparticles

  • Ying CiEmail author
  • Si Wang
  • XiaoLong Zhang
  • ZhiQiang Fang
  • AiMin Ma
  • ZhuoRen Huang


Metal ion-doped titanium dioxide (TiO2) nanoparticles have been proved to be one of the most efficient decontaminating catalysts towards chemical warfare agents (CWAs). Nowadays, most of the researchers are paying their attention to the study of single metal ion-doped TiO2 nanoparticles, while a few reports are focused on the photocatalytic degradation performance of two or more kinds of metal ions codoped TiO2 nanoparticles. In this work, Fe–Cu codoped TiO2 nanoparticles have been prepared by the homogeneous precipitation method. 2-Chloroethyl ethyl sulfide (2-CEES), as a model, has been used to investigate its photocatalytic degradation efficiency on the prepared catalysts. The results showed that 10 wt% Fe2–Cu1 codoped TiO2 nanoparticles have an obvious improved photocatalytic activity compared with the single Fe/Cu-doped TiO2 nanoparticles, which are majorly attributed to its physical structure properties through HRTEM, XRD, UV–Vis, BET and BJH characteristics. An appropriate amount of Fe–Cu dopant does not change the crystal structure of TiO2 nanoparticles, but improves the dispersion, reduces the grain size, increases the surface area and improves the light utilization. 10% Fe2–Cu1 codoped TiO2 nanoparticles were dispersed into HFE-458 (HCF2CF2CH2OCF2CF2H), and the disinfection efficiency of 2-chloroethyl ethyl sulfide (HD simulation, 2-CEES), dimethyl methanephosphonate (GD simulation, DMMP) and malathion (VX simulation) were studied under the simulated sunlight irradiation. After reacting for 60 min, the degradation efficiency of 2-CEES, DMMP and malathion is 99.73%, 99.20% and 94.27%, respectively.



This work was supported by the Scientific Rearch Fund of the Chinese Academy of Inspection and Quarantine (2017JK007).


  1. 1.
    S. Chauhan, S. Chauhan, R. D’Cruz, S. Faruqi, K.K. Singh, S. Varma, M. Singh, V. Karthik, Environ. Toxicol. Pharmacol. 26, 113–122 (2008)CrossRefGoogle Scholar
  2. 2.
    C. Solazzo, D. Erhardt, F. Marte, D. Von Endt, C. Tumosa, Appl. Phys. A 79, 247–252 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    K. Kim, O.G. Tsay, D.A. Atwood, D.G. Churchill, Chem. Rev. 111, 5345–5403 (2011)CrossRefGoogle Scholar
  4. 4.
    S.-W. Zhang, T.M. Swager, J. Am. Chem. Soc. 125, 3420–3421 (2003)CrossRefGoogle Scholar
  5. 5.
    Y.-C. Yang, J.A. Baker, J.R. Ward, Chem. Rev. 92, 1729–1743 (1992)CrossRefGoogle Scholar
  6. 6.
    A.B. Kanu, P.E. Haigh, H.H. Hill, Anal. Chim. Acta 553, 148–159 (2005)CrossRefGoogle Scholar
  7. 7.
    F. Wang, H.W. Gu, T.M. Swager, J. Am. Chem. Soc. 130, 5392–5393 (2008)CrossRefGoogle Scholar
  8. 8.
    B.-S. Joo, J.-S. Huh, D.-D. Lee, Sens. Actuator. B 121, 47–53 (2007)CrossRefGoogle Scholar
  9. 9.
    B.M. Smith, Chem. Soc. Rev. 37, 470–478 (2008)CrossRefGoogle Scholar
  10. 10.
    B. Singh, G.K. Prasad, K.S. Pandey, R.K. Danikhel, R. Vijayaraghavan, Def. Sci. J. 60, 428–441 (2010)CrossRefGoogle Scholar
  11. 11.
    D.A. Panayotov, J.R. Morris, Langmuir 25, 3652–3658 (2009)CrossRefGoogle Scholar
  12. 12.
    L.Y. Xiang, J. Ya, F.J. Hu, L.X. Li, Z.F. Liu, Appl. Phys. A 123, 160 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    M. Radecka, M. Rekas, A. Trenczek-Zajac, K. Zakrzewska, J. Power Sources 181, 46–55 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    L. Gu, J.Y. Wang, R. Qi, X.Y. Wang, P. Xu, X.J. Han, J. Mol. Catal. A: Chem. 357, 19–25 (2012)CrossRefGoogle Scholar
  15. 15.
    V. Stengl, S. Bakardjieva, J. Phys. Chem. C 114, 19308–19317 (2010)CrossRefGoogle Scholar
  16. 16.
    V. Stengl, T.M. Grygar, F. Oplustil, T. Nemec, J. Hazard. Mater. 192, 1491–1504 (2011)CrossRefGoogle Scholar
  17. 17.
    V. Stengl, J. Bludska, F. Oplustil, T. Nemec, Mater. Res. Bull. 46, 2050–2056 (2011)CrossRefGoogle Scholar
  18. 18.
    V. Stengl, F. Oplustil, T. Nemec, Photochem. Photobiol. 88, 265–276 (2012)CrossRefGoogle Scholar
  19. 19.
    Z. Shen, J.Y. Zhong, L.K. Chen, H. Zhen, Q. Min, Y. Cui, Y.Z. Zhao, J. Inorg. Mater. 31, 427–433 (2016)CrossRefGoogle Scholar
  20. 20.
    Z. Shen, J.Y. Zhong, H. Zheng, Enciron. Sci. Technol. 38, 14–20 (2015)ADSGoogle Scholar
  21. 21.
    S. Zhong, J.-Y. Zhong, X.-Y. Han, L.-Y. Wang, Y. Cui, L.-K. Chen, Y.-C. Zheng, Chem. Eng. J. 302, 111–119 (2016)CrossRefGoogle Scholar
  22. 22.
    Z. Shen, J.-Y. Zhong, N.-N. Chai, X. He, H. Zang, X.-Y. Xu, P. Han, J.-Z. Zhang, Chem. Phys. Lett. 678, 146–152 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    H.F. Fei, Y.L. An, J.K. Feng, L.J. Ci, S.L. Xiong, RSC Adv. 6, 53560–53565 (2016)CrossRefGoogle Scholar
  24. 24.
    K. Thamaphat, P. Limsuwan, B. Ngotawornchai, Nat. Sci. 42, 357–361 (2008)Google Scholar
  25. 25.
    J.G. Yu, J.X. Low, W. Xiao, P. Zhou, M. Jaroniec, J. Am. Chem. Soc. 136, 8839–8842 (2014)CrossRefGoogle Scholar
  26. 26.
    M. Ksibi, S. Rossignol, J.-M. Tatibouët, C. Trapalis, Mater. Lett. 62, 4204–4206 (2008)CrossRefGoogle Scholar
  27. 27.
    W.J. Foo, C. Zhang, G.W. Ho, Nanoscale 5, 759–764 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    G. Schimanke, M. Martin, Solid State Ionics 136–137, 1235–1240 (2000)CrossRefGoogle Scholar
  29. 29.
    R. López, R. Gómez, M.E. Llanos, Cata. Today 148, 103–108 (2009)CrossRefGoogle Scholar
  30. 30.
    D. Li, H.S. Zhou, I. Honma, Nature 3, 65–72 (2004)CrossRefGoogle Scholar
  31. 31.
    A.L. Linsebigler, G.Q. Lu, J.T. Yates, J. Chem. Rev. 95, 735–758 (1995)CrossRefGoogle Scholar
  32. 32.
    R.M. Rioux, H. Song, J.D. Hoefelmeyer, P. Yang, G.A. Somorjai, J. Phys. Chem. B 109, 2192–2202 (2005)CrossRefGoogle Scholar
  33. 33.
    R. Kaiser, A. Kulczyk, D. Rich, R.J. Willey, J. Minicucci, B. MacIver, Ind. Eng. Chem. Res. 46, 6126–6132 (2007)CrossRefGoogle Scholar
  34. 34.
    J.S. Lee, K.H. You, C.B. Park, H. Photoactive, Adv. Mater. 24, 1084–1088 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ying Ci
    • 1
    Email author
  • Si Wang
    • 2
  • XiaoLong Zhang
    • 1
  • ZhiQiang Fang
    • 1
  • AiMin Ma
    • 1
  • ZhuoRen Huang
    • 1
  1. 1.Chinese Academy of Inspection and QuarantineBeijingChina
  2. 2.Beijing University of Chemical TechnologyBeijingChina

Personalised recommendations