Applied Physics A

, 124:783 | Cite as

Effect of metal/metal oxide coupling on the photoluminescence properties of ZnO microrods

  • Sock-Kuan Soo
  • Anh Thi Le
  • Swee-Yong PungEmail author
  • Srimala Sreekantan
  • Atsunori Matsuda
  • Dai Phu Huynh


Despite its unique properties, zinc oxide (ZnO) particles have limited usage in optoelectronic devices and biochemical sensors due to its relatively poor ultraviolet (UV) emission. In this research, the localized surface plasmon resonance (LSPR) effect of metal nanoparticles such as silver (Ag), aluminium (Al), copper (Cu) and iron (Fe) that were coupled with ZnO microrods was studied. The metal coupled ZnO microrods were synthesized by solution impregnated method. The metal nanoparticles were clearly observed deposited onto the surface of ZnO microrods using transmission electron microscope (TEM) and energy dispersive X-ray (EDX) mapping. The room temperature photoluminescence (RTPL) analysis of ZnO microrods coupled with Al, Ag, Fe showed remarkable improvement of UV emission and quenching of defect related emission. The intensity ratio (Iuv/Ivis) of ZnO microrods was 1.6 but was enhanced to 26.1, 4.4, and 4.0 by coupling of Al, Ag and Fe, respectively. However, when Cu was embedded onto ZnO microrods, the Iuv/Ivis of ZnO microrods was suppressed to 0.1. The photoluminescent mechanism of Al, Ag and Fe–ZnO particles was attributed to LSPR effect. In contrary, deposition of Cu onto ZnO microrods induced energy level in bandgap of ZnO, producing the visible light emission.



The authors would like to thank Ministry of Higher Education, Malaysia for providing the research funding under Fundamental Research Grant Scheme (FRGS) (203.PBAHAN.6071327) and AUN/SEED Net under Collaborative Research Program (CR) (304.PBAHAN.6050354) for providing the research funding to conduct this project.

Supplementary material

339_2018_2208_MOESM1_ESM.docx (55 kb)
Supplementary material 1 (DOCX 54 KB)


  1. 1.
    J. Jana, M. Ganguly, T. Pal, RSC Adv. 6, 86174 (2016)CrossRefGoogle Scholar
  2. 2.
    M.L. Juan, M. Righini, R. Quidant, Nat. Photonics. 5, 349 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    M. Norek, G. Łuka, M. Włodarski, Appl. Surf. Sci. 384, 18 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    C. Caucheteur, T. Guo, J. Albert, Anal. Bioanal. Chem. 407, 3883 (2015)CrossRefGoogle Scholar
  5. 5.
    M. Bashevoy, F. Jonsson, A. Krasavin, N. Zheludev, Y. Chen, M. Stockman, Nano Lett. 6, 1113 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    N. Venugopal, G. Kaur, A. Mitra, Appl. Surf. Sci. 320, 30 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    K. Catchpole, A. Polman, Appl. Phys. Lett. 93, 191113 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    B. Liedberg, C. Nylander, I. Lundström, Biosens. Bioelectron. 10, 1 (1995)CrossRefGoogle Scholar
  9. 9.
    J. Homola, Chem. Rev. 108, 462 (2008)CrossRefGoogle Scholar
  10. 10.
    J. Cao, T. Sun, K.T. Grattan, Sens. Actuator B Chem. 195, 332 (2014)CrossRefGoogle Scholar
  11. 11.
    H.H. Nguyen, J. Park, S. Kang, M. Kim, Sensor 15, 10481 (2015)CrossRefGoogle Scholar
  12. 12.
    A.J. Haes, S. Zou, G.C. Schatz, R.P. Van Duyne, J. Phys. Chem B. 108, 109 (2004)CrossRefGoogle Scholar
  13. 13.
    Y.-H. Su, Y.-F. Ke, S.-L. Cai, Q.-Y. Yao, Light. Sci. Appl. 1, e14 (2012)CrossRefGoogle Scholar
  14. 14.
    D. Derkacs, S. Lim, P. Matheu, W. Mar, E. Yu, Appl. Phys. Lett. 89, 093103 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    L. Qiao, D. Wang, L. Zuo, Y. Ye, J. Qian, H. Chen et al., Appl. Energy 88, 848 (2011)CrossRefGoogle Scholar
  16. 16.
    J. Miao, W. Hu, Y. Jing, W. Luo, L. Liao, A. Pan et al., Small. 11, 2392 (2015)CrossRefGoogle Scholar
  17. 17.
    Z.L. Wang, J. Phys. Condens. Matt. 16, R829 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    A. Janotti, C.G. Van de Walle, Rep. Prog. Phys. 72, 126501 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    A. Djurišić, A. Ng, X. Chen, Prog. Quant. Electron. 34, 191 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    A.B. Djurišić, Y.H. Leung, Small. 2, 944 (2006)CrossRefGoogle Scholar
  21. 21.
    J. Bao, M.A. Zimmler, F. Capasso, X. Wang, Z. Ren, Nano Lett. 6, 1719 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    Y.Q. Bie, Z.M. Liao, P.W. Wang, Y.B. Zhou, X.B. Han, Y. Ye et al., Adv. Mater. 22, 4284 (2010)CrossRefGoogle Scholar
  23. 23.
    H. Liang, S. Yu, H. Yang, Appl. Phys. Lett. 96, 101116 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    J. Law, J. Thong, Appl. Phys. Lett. 88, 133114 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    Y. Jin, J. Wang, B. Sun, J.C. Blakesley, N.C. Greenham, Nano Lett. 8, 1649 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    A.K. Srivastava, Oxide nanostructures: growth, microstructures, and properties (CRC Press, Boca Raton, 2014)CrossRefGoogle Scholar
  27. 27.
    X. Ma, P. Chen, D. Li, Y. Zhang, D. Yang, Appl. Phys. Lett. 91, 021105 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    A. Djurišić, Y. Leung, K. Tam, Y. Hsu, L. Ding, W. Ge et al., Nanotechnology. 18, 095702 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    C.H. Ahn, Y.Y. Kim, D.C. Kim, S.K. Mohanta, H.K. Cho, J. Appl. Phys. 105, 013502 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    S. Iwan, V. Fauzia, A. Umar, X. Sun, AIP Conf. Proc. 020031 (2016)Google Scholar
  31. 31.
    F. Han, S. Yang, W. Jing, K. Jiang, Z. Jiang, H. Liu et al., Opt. Express 22, 11436 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    M.T. Thein, S.-Y. Pung, A. Aziz, M. Itoh, J. Exp. Nanosci. 10, 1068 (2015)CrossRefGoogle Scholar
  33. 33.
    M.-K. Lee, T.G. Kim, W. Kim, Y.-M. Sung, J. Phys. Chem. C. 112, 10079 (2008)CrossRefGoogle Scholar
  34. 34.
    M.T. Thein, S.-Y. Pung, A. Aziz, M. Itoh, J. Taiwan. Inst. Chem. E. 61, 156 (2016)CrossRefGoogle Scholar
  35. 35.
    L. Wang, J. Wang, S. Zhang, Y. Sun, X. Zhu, Y. Cao et al., Anal. Chim. Acta 653, 109 (2009)CrossRefGoogle Scholar
  36. 36.
    K. Liu, R. Chen, G. Xing, T. Wu, H. Sun, Appl. Phys. Lett. 96, 023111 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    C. Jin, H. Kim, H.-Y. Ryu, H.W. Kim, C. Lee, J. Phys. Chem. C. 115, 8513 (2011)CrossRefGoogle Scholar
  38. 38.
    L. Shi, Y. Xu, S. Hark, Y. Liu, S. Wang, L.-M. Peng et al., Nano Lett. 7, 3559 (2007)ADSCrossRefGoogle Scholar
  39. 39.
    P. Shimpi, P.-X. Gao, D.G. Goberman, Y. Ding, Nanotechnology. 20, 125608 (2009)ADSCrossRefGoogle Scholar
  40. 40.
    J. Richters, T. Voss, D. Kim, R. Scholz, M. Zacharias, Nanotechnology. 19, 305202 (2008)CrossRefGoogle Scholar
  41. 41.
    C. Shan, Z. Liu, S. Hark, Appl. Phys, Lett. 92, 073103 (2008)ADSCrossRefGoogle Scholar
  42. 42.
    A. Dev, R. Niepelt, J. Richters, C. Ronning, T. Voss, Nanotechnology. 21, 065709 (2010)ADSCrossRefGoogle Scholar
  43. 43.
    A. Dev, J. Richters, J. Sartor, H. Kalt, J. Gutowski, T. Voss, Appl. Phys. Lett. 98, 131111 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    S.N.Q.A.A. Aziz, S.-Y. Pung, Z. Lockman, Appl. Phys. A. 116, 1801 (2014)ADSCrossRefGoogle Scholar
  45. 45.
    K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, A. Scherer, Nat. Mater. 3, 601 (2004)ADSCrossRefGoogle Scholar
  46. 46.
    X. Gu, T. Qiu, W. Zhang, P.K. Chu, Nanoscale. Res. Lett. 6, 199 (2011)ADSCrossRefGoogle Scholar
  47. 47.
    J. Lu, C. Xu, J. Dai, J. Li, Y. Wang, Y. Lin et al., Nanoscale. 7, 3396 (2015)ADSCrossRefGoogle Scholar
  48. 48.
    B. Sarma, B.K. Sarma, Appl. Surf. Sci. 410, 557 (2017)ADSCrossRefGoogle Scholar
  49. 49.
    M. Sun, Z. Xu, M. Yin, Q. Lin, L. Lu, X. Xue et al., Nanoscale. 8, 8924 (2016)ADSCrossRefGoogle Scholar
  50. 50.
    H. Lu, X. Xu, L. Lu, M. Gong, Y. Liu, J. Phys. Condens. Matt. 20, 472202 (2008)ADSCrossRefGoogle Scholar
  51. 51.
    Y. Harada, I. Tanahashi, N. Ohno, J. Lumin. 129, 1759 (2009)CrossRefGoogle Scholar
  52. 52.
    X.D. Zhou, X.H. Xiao, J.X. Xu, G.X. Cai, F. Ren, C.Z. Jiang, EPL 93, 57009 (2011)ADSCrossRefGoogle Scholar
  53. 53.
    P. Cheng, D. Li, D. Yang, Opt. Express 16, 8896 (2008)ADSCrossRefGoogle Scholar
  54. 54.
    P. Cheng, D. Li, X. Li, T. Liu, D. Yang, J. Appl. Phys. 106, 063120 (2009)ADSCrossRefGoogle Scholar
  55. 55.
    J.B. You, X.W. Zhang, Y.M. Fan, Z.G. Yin, P.F. Cai, N.F. Chen, J. Phys. D. Appl. Phys. 41, 205101 (2008)ADSCrossRefGoogle Scholar
  56. 56.
    T.-Y. Chiang, C.-L. Dai, Nanoscale. Res. Lett. 7, 263 (2012)ADSCrossRefGoogle Scholar
  57. 57.
    Y. Yan, Y. Zeng, Y. Wu, Y. Zhao, L. Ji, Y. Jiang et al., Opt. Express 22, 23552 (2014)ADSCrossRefGoogle Scholar
  58. 58.
    P.R. West, S. Ishii, G.V. Naik, N.K. Emani, V.M. Shalaev, A. Boltasseva, Laser. Photonics. Rev. 4, 795 (2010)ADSCrossRefGoogle Scholar
  59. 59.
    K. Aslan, C.D. Geddes, Anal. Chem. 81, 6913 (2009)CrossRefGoogle Scholar
  60. 60.
    R.S. Zeferino, M.B. Flores, U. Pal, J. Appl. Phys. 109, 014308 (2011)ADSCrossRefGoogle Scholar
  61. 61.
    D. Lin, H. Wu, R. Zhang, W. Pan, Chem. Mater. 21, 3479 (2009)CrossRefGoogle Scholar
  62. 62.
    P.d.S. Erica, C. Michel, J.d.S. Gilvan, B.d.A. Larissa, L. Paulo Noronha Filho, D. Steven Frederick et al., Mater. Sci. Appl. (2013)Google Scholar
  63. 63.
    X. Zi-qiang, D. Hong, L. Yan, C. Hang, Mater. Sci. Semiconductor. Proc. 9, 132 (2006)CrossRefGoogle Scholar
  64. 64.
    Q. Hou, F. Meng, J. Sun, Nanoscale. Res. Lett. 8, 144 (2013)ADSCrossRefGoogle Scholar
  65. 65.
    M.M. Ba-Abbad, A.A.H. Kadhum, A.B. Mohamad, M.S. Takriff, K. Sopian, Chemosphere. 91, 1604 (2013)ADSCrossRefGoogle Scholar
  66. 66.
    Z. Yang, W. Zhong, C. Au, X. Du, H. Song, X. Qi et al., J. Phys. Chem. C. 113, 21269 (2009)CrossRefGoogle Scholar
  67. 67.
    M. Mahanti, D. Basak, J. Lumin. 145, 19 (2014)CrossRefGoogle Scholar
  68. 68.
    S. Pung, C. Ong, K.M. Isha, M. Othman, Sains. Malays. 43, 273 (2014)Google Scholar
  69. 69.
    P. Gangopadhyay, R. Kesavamoorthy, S. Bera, P. Magudapathy, K.G.M. Nair, B.K. Panigrahi et al., Phys. Rev. Lett. 94, 047403 (2005)ADSCrossRefGoogle Scholar
  70. 70.
    J. Gangwar, B.K. Gupta, P. Kumar, S.K. Tripathi, A.K. Srivastava, Dalton. T. 43, 17034 (2014)CrossRefGoogle Scholar
  71. 71.
    S. Saha, A. Bhunia, J. Phys. Sci. 17, 191 (2013)Google Scholar
  72. 72.
    X. Zhao, P. Wang, Z. Yan, N. Ren, Opt. Mater. 42, 544 (2015)ADSCrossRefGoogle Scholar
  73. 73.
    X. Zhou, X. Xiao, J. Xu, G. Cai, F. Ren, C. Jiang, EPL 93, 57009 (2011)ADSCrossRefGoogle Scholar
  74. 74.
    U. Kazuyuki, S. Ryuichi, Jpn. J. Appl. Phys. 12, 1869 (1973)CrossRefGoogle Scholar
  75. 75.
    Y. Wang, P.J. Thomas, P. O’Brien, J. Phys. Chem. B. 110, 21412 (2006)CrossRefGoogle Scholar
  76. 76.
    A. Srivastava, M. Deepa, N. Bahadur, M. Goyat, Mater. Chem. Phys. 114, 194 (2009)CrossRefGoogle Scholar
  77. 77.
    X. Wang, C. Song, K. Geng, F. Zeng, F. Pan, Appl. Surf. Sci. 253, 6905 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Sock-Kuan Soo
    • 1
  • Anh Thi Le
    • 1
  • Swee-Yong Pung
    • 1
    Email author
  • Srimala Sreekantan
    • 1
  • Atsunori Matsuda
    • 2
  • Dai Phu Huynh
    • 3
  1. 1.School of Materials and Mineral Resources EngineeringUniversiti Sains Malaysia Engineering CampusPulau PinangMalaysia
  2. 2.Department of Electrical and Electronic Information EngineeringToyohashi University of TechnologyToyohashiJapan
  3. 3.Faculty Faculty of Materials Technology, National Key Lab. of Polymer and Composite MaterialsHoChiMinh University of Technology, Vietnam National UniversityHoChiMinhVietnam

Personalised recommendations