Advertisement

Applied Physics A

, 124:784 | Cite as

Spontaneous self-assembly of conductive molecular linkages between gold nanoelectrodes from aryl diisocyanides

  • Rasha Abuflaha
  • Wilfred T. TysoeEmail author
Article
  • 33 Downloads

Abstract

The adsorption of 4,4′-biphenyldiisocyanide (BPDI) and 4,4″-terphenyldiisocyanide (TPDI) is studied on gold films from solution as a function of coverage using attenuated total internal reflection infrared (ATR-IR) spectroscopy to identify the nature and determine the orientation of the adsorbed species. At low coverages, both BPDI and TPDI adsorb with their molecular planes parallel to the surface and exhibit a single isocyanide stretching frequency consistent with the formation of gold-linked BPDI and TPDI oligomer chains, analogous to similar oligomers found when using 1,4-phenylene diisocyanobenzene (1,4-PDI) on gold. A vibrational mode due to a free isocyanide appears at higher BPDI and TPDI exposures, indicating that adsorbed BPDI and TPDI have reoriented to form η1-adsorbed species, in a similar behavior to that found previously for 1,4-PDI on gold. It has been demonstrated that gold-PDI oligomer chains provide conductive bridges between gold nanoparticles on mica, in which the conductivity initially increases with 1,4-PDI dose as the number of oligomer linkages increases, but then decreases once again as the 1,4-PDI adopts a perpendicular orientation to disrupt the conductive chains. Similar behavior is found for BPDI and TPDI, where the dose at which a conductivity decrease is noted corresponds to the appearance of the free isocyanide stretching mode in the ATR-IR spectra. The sheet resistance R of the conductive films was measured as a function of sample temperature where it was found to vary linearly as \({\text{ln}}(R)\) versus \(1/\sqrt T\). The slopes of such plots for gold nanoparticle films with different initial conductivities are used to estimate the tunneling barrier for gold nanoparticles linked by BPDI- and TPDI-derived oligomers. The results suggest that the barrier increases in the order TPDI > BPDI > 1,4-PDI. These results indicate that the ability to link between gold nanoparticles on surfaces by forming gold-containing oligomer chains with phenyl-linked diisocyanide is a quite general phenomenon.

Notes

Acknowledgements

RA thanks the Jordanian government for support of this work.

References

  1. 1.
    A. Aviram, M.A. Ratner, Molecular rectifiers. Chem. Phys. Lett. 29(2), 277–283 (1974)ADSCrossRefGoogle Scholar
  2. 2.
    J.I. Henderson, S. Feng, G.M. Ferrence, T. Bein, C.P. Kubiak, Self-assembled monolayers of dithiols, diisocyanides, and isocyanothiols on gold: ‘chemically sticky’ surfaces for covalent attachment of metal clusters and studies of interfacial electron transfer. Inorg. Chim. Acta 242(1), 115–124 (1996)CrossRefGoogle Scholar
  3. 3.
    M.A. Reed, C. Zhou, C.J. Muller, T.P. Burgin, J.M. Tour, Conductance of a Molecular Junction. Science 278(5336), 252–254 (1997)CrossRefGoogle Scholar
  4. 4.
    S.N. Yaliraki, M. Kemp, M.A. Ratner, Conductance of molecular wires: Influence of molecule-electrode binding. J. Am. Chem. Soc. 121(14), 3428–3434 (1999)CrossRefGoogle Scholar
  5. 5.
    X.D. Cui, A. Primak, X. Zarate, J. Tomfohr, O.F. Sankey, A.L. Moore, T.A. Moore, D. Gust, G. Harris, S.M. Lindsay, Reproducible measurement of single-molecule conductivity. Science 294(5542), 571–574 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    Y.Q. Xue, M.A. Ratner, Microscopic study of electrical transport through individual molecules with metallic contacts. I. Band lineup, voltage drop, and high-field transport. Phys. Rev. B 68(11) (2003)Google Scholar
  7. 7.
    X. Xiao, B. Xu, N.J. Tao, Measurement of single molecule conductance: benzenedithiol and benzenedimethanethiol. Nano Lett. 4(2), 267–271 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    M. Kiguchi, S. Miura, K. Hara, M. Sawamura, K. Murakoshi, Conductance of a single molecule anchored by an isocyanide substituent to gold electrodes. Appl. Phys. Lett. 89(21), 213104 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    R.B. Pontes, F.D. Novaes, A. Fazzio, A.J.R. da Silva, Adsorption of benzene-1,4-dithiol on the Au(111) surface and its possible role in molecular conductance. J. Am. Chem. Soc. 128(28), 8996–8997 (2006)CrossRefGoogle Scholar
  10. 10.
    M. Tsutsui, Y. Teramae, S. Kurokawa, A. Sakai, High-conductance states of single benzenedithiol molecules. Appl. Phys. Lett. 89(16), 163111 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    A. Arnold, F. Weigend, F. Evers, Quantum chemistry calculations for molecules coupled to reservoirs: formalism, implementation, and application to benzenedithiol. J. Chem. Phys. 126(17), 174101 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    S. Yeganeh, M.A. Ratner, M. Galperin, A. Nitzan, Transport in state space: voltage-dependent conductance calculations of benzene-1,4-dithiol. Nano Lett. 9(5), 1770–1774 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    K. Horiguchi, M. Tsutsui, S. Kurokawa, A. Sakai, Electron transmission characteristics of Au/1,4-benzenedithiol/Au junctions. Nanotechnology 20(2), 025204 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    A. Mishchenko, D. Vonlanthen, V. Meded, M. Bürkle, C. Li, I.V. Pobelov, A. Bagrets, J.K. Viljas, F. Pauly, F. Evers, M. Mayor, T. Wandlowski, Influence of conformation on conductance of biphenyl-dithiol single-molecule contacts. Nano Lett. 10(1), 156–163 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    Y. Kim, T. Pietsch, A. Erbe, W. Belzig, E. Scheer, Benzenedithiol: a broad-range single-channel molecular conductor. Nano Lett. 11(9), 3734–3738 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    R.B. Pontes, A.R. Rocha, S. Sanvito, A. Fazzio, A.J.R. da Silva, Ab initio calculations of structural evolution and conductance of benzene-1,4-dithiol on gold leads. ACS Nano 5(2), 795–804 (2011)CrossRefGoogle Scholar
  17. 17.
    A.M. Boscoboinik, S.J. Manzi, W.T. Tysoe, V.D. Pereyra, J.A. Boscoboinik, Directed nanoscale self-assembly of molecular wires interconnecting nodal points using monte carlo simulations. Chem. Mater. 27(19), 6642–6649 (2015)CrossRefGoogle Scholar
  18. 18.
    K.H. Müller, J. Herrmann, B. Raguse, G. Baxter, T. Reda, Percolation model for electron conduction in films of metal nanoparticles linked by organic molecules. Phys. Rev. B 66(7), 075417 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    N. Fishelson, I. Shkrob, O. Lev, J. Gun, A.D. Modestov, Studies on charge transport in self-assembled gold–dithiol films: conductivity, photoconductivity, and photoelectrochemical measurements. Langmuir 17(2), 403–412 (2000)CrossRefGoogle Scholar
  20. 20.
    R.H. Terrill, T.A. Postlethwaite, C.-H. Chen, C.-D. Poon, A. Terzis, A. Chen, J.E. Hutchison, M.R. Clark, G. Wignall, Monolayers in three dimensions: NMR, SAXS, thermal, and electron hopping studies of alkanethiol stabilized gold clusters. J. Am. Chem. Soc. 117(50), 12537–12548 (1995)CrossRefGoogle Scholar
  21. 21.
    J. Boscoboinik, J. Kestell, M. Garvey, M. Weinert, W. Tysoe, Creation of low-coordination gold sites on Au(111) surface by 1,4-phenylene diisocyanide adsorption. Top. Catal. 54(1–4), 20–25 (2011)CrossRefGoogle Scholar
  22. 22.
    J.A. Boscoboinik, F.C. Calaza, Z. Habeeb, D.W. Bennett, D.J. Stacchiola, M.A. Purino, W.T. Tysoe, One-dimensional supramolecular surface structures: 1,4-diisocyanobenzene on Au(111) surfaces. Phys. Chem. Chem. Phys. 12(37), 11624–11629 (2010)CrossRefGoogle Scholar
  23. 23.
    J. Zhou, D. Acharya, N. Camillone, P. Sutter, M.G. White, Adsorption structures and electronic properties of 1,4-phenylene diisocyanide on the Au(111) surface. J. Phys. Chem. C 115(43), 21151–21160 (2011)CrossRefGoogle Scholar
  24. 24.
    J. Kestell, R. Abuflaha, J.A. Boscoboinik, Y. Bai, D.W. Bennett, W.T. Tysoe, Linking gold nanoparticles with conductive 1,4-phenylene diisocyanide-gold oligomers. Chem. Commun. 49(14), 1422–1424 (2013)CrossRefGoogle Scholar
  25. 25.
    J. Kestell, R. Abuflaha, J.A. Boscoboinik, M. Garvey, D.W. Bennett, W.T. Tysoe, Determination of adsorbate structures from 1,4-phenylene diisocyanide on gold. J. Phys. Chem. Lett. 5(20), 3577–3581 (2014)CrossRefGoogle Scholar
  26. 26.
    M. Garvey, J. Kestell, R. Abuflaha, D.W. Bennett, G. Henkelman, W.T. Tysoe, Understanding and controlling the 1,4-phenylene diisocyanide–gold oligomer formation pathways. J. Phys. Chem. C 118(36), 20899–20907 (2014)CrossRefGoogle Scholar
  27. 27.
    M. Ito, H. Noguchi, K. Ikeda, K. Uosaki, Substrate dependent structure of adsorbed aryl isocyanides studied by sum frequency generation (SFG) spectroscopy. Phys. Chem. Chem. Phys. 12(13), 3156–3163 (2010)CrossRefGoogle Scholar
  28. 28.
    B. Kim, J.M. Beebe, Y. Jun, X.Y. Zhu, C.D. Frisbie, Correlation between HOMO alignment and contact resistance in molecular junctions: aromatic thiols versus aromatic isocyanides. J. Am. Chem. Soc. 128(15), 4970–4971 (2006)CrossRefGoogle Scholar
  29. 29.
    Y. Li, D. Lu, S.A. Swanson, J.C. Scott, G. Galli, Microscopic characterization of the interface between aromatic isocyanides and Au(111): a first-principles investigation. J. Phys. Chem. C 112(16), 6413–6421 (2008)CrossRefGoogle Scholar
  30. 30.
    K.L. Murphy, W.T. Tysoe, D.W. Bennett, A comparative investigation of aryl isocyanides chemisorbed to palladium and gold: an ATR-IR spectroscopic study. Langmuir 20(5), 1732–1738 (2004)CrossRefGoogle Scholar
  31. 31.
    M.J. Robertson, R.J. Angelici, Adsorption of Aryl and Alkyl isocyanides on powdered gold. Langmuir 10(5), 1488–1492 (1994)CrossRefGoogle Scholar
  32. 32.
    K.-C. Shih, R.J. Angelici, Equilibrium and saturation coverage studies of alkyl and aryl isocyanides on powdered gold. Langmuir 11(7), 2539–2546 (1995)CrossRefGoogle Scholar
  33. 33.
    R. Abuflaha, D. Olson, D.W. Bennett, W.T. Tysoe, Surface chemistry and structures of 1,4-phenylene diisocyanide on gold films from solution. Surf. Sci. 649, 56–59 (2016)ADSCrossRefGoogle Scholar
  34. 34.
    P. Sheng, J. Klafter, Hopping conductivity in granular disordered systems. Phys. Rev. B 27(4), 2583–2586 (1983)ADSCrossRefGoogle Scholar
  35. 35.
    A.L. Efros, B.I. Shklovskii, Coulomb gap and low temperature conductivity of disordered systems. J. Phys. C: Solid State 8(4), L49 (1975)ADSCrossRefGoogle Scholar
  36. 36.
    P. Sheng, B. Abeles, Y. Arie, Hopping conductivity in granular metals. Phys. Rev. Lett. 31(1), 44–47 (1973)ADSCrossRefGoogle Scholar
  37. 37.
    B. Abeles, P. Sheng, M.D. Coutts, Y. Arie, Structural and electrical properties of granular metal films. Adv. Phys. 24(3), 407–461 (1975)ADSCrossRefGoogle Scholar
  38. 38.
    R.J. Angelici, M. Lazar, Isocyanide ligands adsorbed on metal surfaces: applications in catalysis, nanochemistry, and molecular electronics. Inorg. Chem. 47(20), 9155–9165 (2008)CrossRefGoogle Scholar
  39. 39.
    J.I. Henderson, S. Feng, T. Bein, C.P. Kubiak, Adsorption of diisocyanides on gold. Langmuir 16(15), 6183–6187 (2000)CrossRefGoogle Scholar
  40. 40.
    S.A. Swanson, R. McClain, K.S. Lovejoy, N.B. Alamdari, J.S. Hamilton, J.C. Scott, Self-assembled diisocyanide monolayer films on gold and palladium. Langmuir 21(11), 5034–5039 (2005)CrossRefGoogle Scholar
  41. 41.
    P. Maksymovych, D.C. Sorescu, J.T. Yates, Gold-adatom-mediated bonding in self-assembled short-chain alkanethiolate species on the Au(111) surface. Phys. Rev. Lett. 97(14), 146103 (2006)ADSCrossRefGoogle Scholar
  42. 42.
    P. Maksymovych, J.T. Yates, Au adatoms in self-assembly of benzenethiol on the Au(111) surface. J. Am. Chem. Soc. 130(24), 7518–7519 (2008)CrossRefGoogle Scholar
  43. 43.
    O. Voznyy, J.J. Dubowski, J.T. Yates, P. Maksymovych, The role of gold adatoms and stereochemistry in self-assembly of methylthiolate on Au(111). J. Am. Chem. Soc. 131(36), 12989–12993 (2009)CrossRefGoogle Scholar
  44. 44.
    P. Maksymovych, O. Voznyy, D.B. Dougherty, D.C. Sorescu, J.T. Yates Jr., Gold adatom as a key structural component in self-assembled monolayers of organosulfur molecules on Au(111). Prog. Surf. Sci. 85(5–8), 206–240 (2010)ADSCrossRefGoogle Scholar
  45. 45.
    J. Kestell, R. Abuflaha, M. Garvey, W.T. Tysoe, Self-assembled oligomeric structures from 1,4-benzenedithiol on Au(111) and the formation of conductive linkers between gold nanoparticles. J. Phys. Chem. C 119(40), 23042–23051 (2015)CrossRefGoogle Scholar
  46. 46.
    A.M. Sharif, D.N. Buckley, M. Buck, C. Silien, Bonding asymmetry and adatoms in low-density self-assembled monolayers of dithiols on Au(111). J. Phys. Chem. C 115(44), 21800–21803 (2011)CrossRefGoogle Scholar
  47. 47.
    J. Zhou, Y. Li, P. Zahl, P. Sutter, D.J. Stacchiola, M.G. White, Characterization of one-dimensional molecular chains of 4,4′-biphenyl diisocyanide on Au(111) by scanning tunneling microscopy. J. Chem. Phys. 142(10), 101901 (2015)ADSCrossRefGoogle Scholar
  48. 48.
    S. Jagtap, Y. Kaji, A. Fukuoka, K. Hara, High density monolayer of diisocyanide on gold surface as a platform of supported Rh-catalyst for selective 1,4-hydrogenation of α,β-unsaturated carbonyl compounds. Chem. Commun. 50(39), 5046–5048 (2014)CrossRefGoogle Scholar
  49. 49.
    M. Milosevic, Internal Reflection and ATR Spectroscopy (Wiley, Hoboken, NJ, 2012)CrossRefGoogle Scholar
  50. 50.
    R.G. Greenler, Infrared study of adsorbed molecules on metal surfaces by reflection techniques. J. Chem. Phys. 44(1), 310–315 (1966)ADSCrossRefGoogle Scholar
  51. 51.
    S.J. Bae, C.-R. Lee, I.S. Choi, C.-S. Hwang, M.-S. Gong, K. Kim, S.-W. Joo, Adsorption of 4-biphenylisocyanide on gold and silver nanoparticle surfaces: surface-enhanced Raman scattering study. J. Phys. Chem. B 106(28), 7076–7080 (2002)CrossRefGoogle Scholar
  52. 52.
    S.-W. Joo, W.-J. Kim, W.S. Yoon, I.S. Choi, Adsorption of 4,4′-biphenyl diisocyanide on gold nanoparticle surfaces investigated by surface-enhanced Raman scattering. J. Raman Spectrosc. 34(4), 271–275 (2003)ADSCrossRefGoogle Scholar
  53. 53.
    N.B. Colthup, L.H. Daly, S.E. Wiberley, Introduction to Infrared and Raman Spectroscopy, 2nd edn. (Academic Press, New York, NY, 1975)Google Scholar
  54. 54.
    A. Hargreaves, S.H. Rizvi, The crystal and molecular structure of biphenyl. Acta Crystallogr. 15(4), 365–373 (1962)CrossRefGoogle Scholar
  55. 55.
    J. Trotter, The crystal and molecular structure of biphenyl. Acta Crystallogr. 14(11), 1135–1140 (1961)CrossRefGoogle Scholar
  56. 56.
    S. Hiroshi, Relations between electronic absorption spectra and spatial configurations of conjugated systems. I. Biphenyl. B. Chem. Soc. Jpn. 32(12), 1340–1350 (1959)CrossRefGoogle Scholar
  57. 57.
    R.M. Barrett, D. Steele, The vibrational spectra and dihedral angles of biphenyl and the 4,4′-dihalogenobiphenyls. J. Mol. Struct. 11(1), 105–125 (1972)ADSCrossRefGoogle Scholar
  58. 58.
    J.E. Katon, E.R. Lippincott, The vibrational spectra and geometrical configuration of biphenyl. Spectrochim. Acta 15, 627–650 (1959)ADSCrossRefGoogle Scholar
  59. 59.
    G. Zerbi, S. Sandroni, Fundamental frequencies and molecular configuration of biphenyl—I. Re-analysis of its vibrational spectrum. Spectrochim. Acta A24(5), 483–510 (1968)ADSCrossRefGoogle Scholar
  60. 60.
    K. Park, T.W. Lee, M.J. Yoon, J.I. Choe, Calculated and experimental UV and IR spectra of oligo-para-phenylenes. Bull. Kor. Chem. Soc. 35(2), 531–538 (2014)CrossRefGoogle Scholar
  61. 61.
    G. Baranovic, L. Bistricic, V. Volovsek, D. Kirin, Molecular vibrations and lattice dynamics of ortho-terphenyl. Mol. Phys. 99(1), 33–46 (2001)ADSCrossRefGoogle Scholar
  62. 62.
    K. Honda, Y. Furukawa, Conformational analysis of p-terphenyl by vibrational spectroscopy and density functional theory calculations. J. Mol. Struct. 735, 11–19 (2005)ADSCrossRefGoogle Scholar
  63. 63.
    A. Ghanem, L. Bokobza, C. Noel, B. Marchon, Conformational analysis of p-terphenyl by vibrational spectroscopy. J. Mol. Struct. 159(1), 47–63 (1987)ADSCrossRefGoogle Scholar
  64. 64.
    S. Hong, R. Reifenberger, W. Tian, S. Datta, J.I. Henderson, C.P. Kubiak, Molecular conductance spectroscopy of conjugated, phenyl-based molecules on Au(111): the effect of end groups on molecular conduction. Superlattice. Microst. 28(4), 289–303 (2000)ADSCrossRefGoogle Scholar
  65. 65.
    A.N. Caruso, R. Rajesh, G. Gallup, J. Redepenning, P.A. Dowben, Orientation and bonding of 4,4′-biphenyldiisocyanide. J. Phys. Chem. B 108(22), 6910–6914 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry and Biochemistry and Laboratory for Surface StudiesUniversity of Wisconsin-MilwaukeeMilwaukeeUSA
  2. 2.Department of ChemistryAl al-Bayt UniversityMafraqJordan

Personalised recommendations