Advertisement

Applied Physics A

, 124:789 | Cite as

Effects of slant angle of metallic fish-scale structure on polarization conversion in the terahertz spectral range

  • Tomoyuki Sasaki
  • Kazutaka Saito
  • Moritsugu Sakamoto
  • Kohei Noda
  • Yasuhiro Tamayama
  • Hiroyuki Okamoto
  • Nobuhiro Kawatsuki
  • Hiroshi Ono
Article
  • 88 Downloads

Abstract

We report herein our investigation of planar terahertz (THz) metamaterials with metallic fish-scale structure. The fish-scale metamaterials with different slant angles were designed based on finite-difference time-domain simulations and fabricated on a dielectric substrate by using a laser-beam drawing system. Theoretical simulations indicate that the eigenpolarization states of the slant fish-scale metamaterials are corotating elliptical polarizations with orthogonal azimuth angles (i.e., the slant fish-scale metamaterials possess planar chirality in the THz spectral range). We measured the transmission spectra and polarization-conversion property of the fabricated metamaterials by using THz time-domain spectroscopy with a wire-grid polarizer. The results were consistent with the theoretical simulations. The experimental and calculation data clarify that both the azimuth angle and elliptical angle of the polarized THz wave transmitted through the planar metamaterial can be controlled by the slant angle of the fish-scale pattern. This study demonstrates the potential of the fish-scale metamaterials for polarization converters in the THz spectral range.

Notes

Acknowledgements

This work was supported by JSPS KAKENHI Grant Numbers JP15H05523, JP18K04259.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    M. Tonouchi, Nat. Photon. 1, 97 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    T.K. -Ostmann, T. Nagatsuma, J. Infrared Millimeter Terahertz Waves 32, 143 (2011)CrossRefGoogle Scholar
  3. 3.
    P.U. Jepsen, D.G. Cooke, M. Koch, Laser Photon. Rev. 5, 124 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    R.A. Shelby, D.R. Smith, S. Schultz, Science 292, 77 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Tamayama, T. Nakanishi, K. Sugiyama, M. Kitano, Phys. Rev. B 73, 193104 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    N. Papasimakis, V.A. Fedotov, A.S. Schwanecke, N.I. Zheludev, F.J. Garcia de Abajo. Appl. Phys. Lett. 91, 081503 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    J. Valentine, S. Zhang, T. Zentgraf, E.U. -Avila, D.A. Genov, G. Bartal, X. Zhang, Nature 455, 376 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    T.S. Kao, F.M. Huang, Y. Chen, E.T.F. Rogers, N.I. Zheludev, Appl. Phys. Lett. 96, 041103 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, F. Lederer, Phys. Rev. Lett. 104, 253902 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    Z. Wei, Y. Cao, Y. Fan, X. Yu, H. Li, Appl. Phys. Lett. 99, 221907 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    K. Aydin, V.E. Ferry, R.M. Briggs, H.A. Atwater, Nat. commun. 2, 517 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    Y. Tamayama, K. Yasui, T. Nakanishi, M. Kitano, Appl. Phys. Lett. 105, 021110 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    W. Zhu, R. Yang, Y. Fan, Q. Fu, H. Wu, P. Zhang, N.-H. Shen, F. Zhang, Nanoscale 10, 12054 (2018)CrossRefGoogle Scholar
  14. 14.
    H.-T. Chen, W. Padilla, J.M.O. Zide, A.C. Gossard, A.J. Taylaor, R.D. Averitt, Nature 444, 597 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    W.J. Padilla, A.J. Taylor, C. Highstrete, M. Lee, R.D. Averitt, Phys. Rev. Lett. 96, 107401 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    H. Tao, N.I. Landy, C.M. Bingham, X. Zhang, R.D. Averitt, W.J. Padilla, Opt. Express 16, 7181 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    W. Withayachumnankul, D. Abbott, IEEE Photon. J. 1, 99 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    M. Choi, S.H. Lee, Y. Kim, S.B. Kang, J. Shin, M.H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, B. Min, Nature 470, 369 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    Q. Li, X. Zhang, W. Cao, A. Lakhtakia, J.F. O’Hara, J. Han, W. Zhang, Appl. Phys. A 107, 285 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    N.K. Grady, J.E. Heyes, D.R. Chowdhury, Y. Zeng, M.T. Reiten, A.K. Azad, A.J. Taylor, D.A.R. Dalvit, H.-T. Chen, Science 340, 1304 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    R. Malureanu, W. Sun, M. Zalkovskij, Q. He, L. Zhou, P.U. Jepsen, A. Lavrinenko, Appl. Phys. A 119, 467 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    T. Kan, A. Isozaki, N. Kanda, N. Nemoto, K. Konishi, H. Takahashi, M.K. -Gonokami, K. Matsumoto, I. Shimoyama, Nat. Commn. 6, 8422 (2015)CrossRefGoogle Scholar
  23. 23.
    T. Suzuki, M. Nagai, Y. Kishi, Opt. Lett. 41, 325 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    Y. Fan, N.-H. Shen, F. Zhang, Z. Wei, H. Li, Q. Zhao, Q. Fu, P. Zhang, T. Koschny, C.M. Soukoulis, Adv. Opt. Mater. 4, 1824 (2016)CrossRefGoogle Scholar
  25. 25.
    K. Ishihara, T. Suzuki, J. Infrared, Millimeter, Terahertz Waves 38, 1130 (2017)CrossRefGoogle Scholar
  26. 26.
    X. Chen, W. Fan, Sci. Rep. 7, 2092 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    H. Zou, Z. Xiao, W. Li, C. Li, Appl. Phys. A 124, 322 (2018)ADSCrossRefGoogle Scholar
  28. 28.
    S.L. Prosvirnin, S.A. Tretyakov, P.L. Mladyonov, J. Electromagn. Waves Appl. 16, 421 (2002)MathSciNetCrossRefGoogle Scholar
  29. 29.
    V.A. Fedotov, P.L. Mladynov, S.L. Prosvirnin, N.I. Zheludev, Phys. Rev. E 72, 056613 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    V.A. Fedotov, P.L. Mladyonov, S.L. Prosvirnin, A.V. Rogacheva, Y. Chen, N.I. Zheludev, Phys. Rev. Lett. 97, 167401 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    V.A. Fedotov, A.S. Schwanecke, N.I. Zheludev, V.V. Khardikov, S.L. Prosvirnin, Nano Lett. 7, 1996 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    A.S. Schwanecke, V.A. Fedotov, V.V. Khardikov, S.L. Prosvirnin, Y. Chen, N.I. Zheludev, Nano Lett. 8, 2940 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    J. Han, H. Li, Y. Fan, Z. Wei, C. Wu, Y. Cao, X. Yu, F. Li, Z. Wang, Appl. Phys. Lett. 98, 151908 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    X. Zhang, J. Gu, W. Cao, J. Han, A. Lakhtakia, W. Zhang, Opt. Lett. 37, 906 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    W. Gao, C.Y. Ng, H.M. Leung, Y. Li, H. Chen, W.Y. Tam, J. Opt. Soc. Am. B 29, 3021 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    V. Dmitriev, C. Nascimento, R. Lima, S.I. Prosvirnin, Microwave Opt. Tech. Lett. 59, 3115 (2017)CrossRefGoogle Scholar
  37. 37.
    C. Huang, Y. Feng, J. Zhao, Z. Wang, T. Jian, Phys. Rev. B 85, 195131 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    D.S. Kliger, J.W. Lewis, C.E. Randall, Polarized Light in Optics and Spectroscopy (Academic Press, Boston, 1990), pp. 103–129CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Tomoyuki Sasaki
    • 1
  • Kazutaka Saito
    • 1
  • Moritsugu Sakamoto
    • 1
  • Kohei Noda
    • 1
  • Yasuhiro Tamayama
    • 1
  • Hiroyuki Okamoto
    • 2
  • Nobuhiro Kawatsuki
    • 3
  • Hiroshi Ono
    • 1
  1. 1.Department of Electrical EngineeringNagaoka University of TechnologyNagaokaJapan
  2. 2.Department of Creative Technology EngineeringNational Institute of Technology, Anan CollegeAnanJapan
  3. 3.Department of Applied Chemistry, Graduate School of EngineeringUniversity of HyogoHimejiJapan

Personalised recommendations