Applied Physics A

, 124:774 | Cite as

Optical absorption in full composition range of ZnCuO thin films synthesized by spray pyrolysis

  • D. Scolfaro
  • A. D. Rodrigues
  • M. P. F. de GodoyEmail author


A systematic investigation of the structural, morphological, and optical properties of Zn1 − xCuxO thin films (0 ≤ x ≤ 1) is presented. The films were produced by spray pyrolysis on top of glass substrates employing a clean acetate chemical route. X-ray diffraction patterns show the polycrystalline character of the films without secondary phases in wurtzite (up to x = 0.10) and monoclinic (above x = 0.90) symmetries. The intermediate concentrations present both phases. Electron microscopy images exhibit homogeneous surface with increasing roughness as the amount of copper increases. For intermediate Cu concentrations, the films present phase segregation with constant optical absorption coefficient around 2 × 104 cm− 1 in the visible range, while a larger tunable absorbance is available for higher Cu concentrations. The indirect bandgap is reported for Zn1 − xCuxO with x > 0.25, whereas the CuO direct bandgap absorption is very sensitive to the introduction of Zn in the lattice.



This work was supported by FAPESP (Grant 2016/10973-4). Fellowships from CAPES and CNPq are acknowledged. The authors thank N. Zanardi from DF-UFSCar for XRD and SEM measurements and N. Coutinho from Laboratório de Pesquisas Fotovoltaicas at UNICAMP for measurements of samples’ thicknesses.


  1. 1.
    A. Janotti, C.G. Van de Walle, Rep. Prog. Phys. 72, 126501 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    P.S. Shewale, N.K. Lee, S.H. Lee, K.Y. Kang, Y.S. Yu, J. Alloys Compd. 624, 251 (2015)CrossRefGoogle Scholar
  3. 3.
    C.-H. Chen, S.-J. Chang, S.-P. Chang, M.-J. Li, I.-C. Chen, T.-J. Hsueh, A.-D. Hsu, C.-L. Hsu, J. Phys. Chem. C 114, 12422 (2010)CrossRefGoogle Scholar
  4. 4.
    C.-L. Hsu, T.-Y. Tsai, J. Electrochem. Soc. 158, K20 (2011)CrossRefGoogle Scholar
  5. 5.
    N.B. Patil, A.R. Nimbalkar, M.G. Patil, Mater. Sci. Eng. B 227, 53 (2018)CrossRefGoogle Scholar
  6. 6.
    Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu, S. Yang, Prog. Mater. Sci. 60, 208 (2014)CrossRefGoogle Scholar
  7. 7.
    D. Jeong, J. Lee, H. Hong, D. Choi, J.-W. Cho, S.-K. Kim, Y. Nam, Sol. Energy Mater. Sol. Cells 169, 270 (2017)CrossRefGoogle Scholar
  8. 8.
    S.B. Wang, C.H. Hsiao, S.J. Chang, K.T. Lam, K.H. Wen, S.C. Hung, S.J. Young, B.R. Huang, Sens. Actuators A 171, 207 (2011)CrossRefGoogle Scholar
  9. 9.
    R. Elilarassi, G. Chandrasekaran, J. Mater. Sci. Mater. Electron. 21, 1168 (2010)CrossRefGoogle Scholar
  10. 10.
    D.H. Kim, T.C. Kim, S.H. Lee, H.K. Jung, J. Jeong, S.H. Han, J. Cryst. Growth 460, 78 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    M.B. Rahmani, S.H. Keshmiri, M. Shafiei, K. Latham, W. Wlodarski, J. du Plessis, K. Kalantar-Zadeh, Sens. Lett. 7, 621 (2009)CrossRefGoogle Scholar
  12. 12.
    T. Dietl, H. Hono, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    X.-L. Li, X.-H. Xu, Z.-Y. Quan, J.-F. Guo, H.-S. Wu, G.A. Gehring, J. Appl. Phys. 105, 103914 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    Y. Jin, Q. Cui, G. Wen, Q. Wang, J. Hao, S. Wang, J. Zhang, J. Phys. D Appl. Phys. 42, 215007 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Nat. Mater. 4, 173 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    P.S. Shewale, Y.S. Yu, Ceram. Int. 43, 4175 (2017)CrossRefGoogle Scholar
  17. 17.
    J.B. Kim, D. Byun, S.Y. Ie, D.H. Park, W.K. Choi, J.-W. Choi, B. Angadi, Semicond. Sci. Technol. 23, 095004 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    P.S. Patil, Mater. Chem. Phys. 59, 185 (1999)ADSCrossRefGoogle Scholar
  19. 19.
    D. Perednis, L.J. Gauckler, J. Electroceram. 14, 103 (2005)CrossRefGoogle Scholar
  20. 20.
    M. Öztas, M. Bedir, Thin Solid Films 516, 1703 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    N.L. Tarwal, K.V. Gurav, S.H. Mujawar, S.B. Sadale, K.W. .Nam, W.R. .Bae, A.V. Moholkar, J.H. .Kim, P.S. .Patil, J.H. Jang, Ceram. Int. 40, 7669 (2014)CrossRefGoogle Scholar
  22. 22.
    S. de Castro, S.L. dos Reis, A.D. Rodrigues, M.P.F. de Godoy, Mater. Sci. Eng. B 212, 96 (2016)CrossRefGoogle Scholar
  23. 23.
    Y.S. Wang, P.J. Thomas, P. O’Brien, J. Phys. Chem. B 110, 21412 (2006)CrossRefGoogle Scholar
  24. 24.
    Y.J. Onofre, S. de Castro, A.D. Rodrigues, M.P.F. de Godoy, J. Anal. Appl. Pyrolysis 128, 131 (2017)CrossRefGoogle Scholar
  25. 25.
    M. Ashokkumar, S. Muthukumaran, J. Alloys Compd. 587, 606 (2014)CrossRefGoogle Scholar
  26. 26.
    K.L. Choy, B. Su, Thin Solid Films 388, 9 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    A. Van der Drift, Philips Res. Rep. 22, 267 (1967)Google Scholar
  28. 28.
    H.B. Nguyen, T.Q. Thai, S. Saitoh, B. Wu, Y. Saitoh, S. Shimo, H. Fujitani, H. Otobe, N. Ohno, Sci. Rep. 6, 23721 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    M. Niranjana, L. Yesappa, S.P. Ashokkumar, H. Vijeth, H. Devendrappa, AIP Conference Proc. p. 1953, 030007, 2018Google Scholar
  30. 30.
    J. Tauc, Mater. Res. Bull. 3, 37 (1968)CrossRefGoogle Scholar
  31. 31.
    M. Heinemann, B. Eifert, C. Heiliger, Phys. Rev. B 87, 115111 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    Y. Wang, S. Lany, J. Ghanbaja, Y. Fagot-Revurat, Y.P. Chen, F. Soldera, D. Horwat, F. Mücklich, J.F. Pierson, Phys. Rev. B 94, 245418 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    B.K. Meyer, A. Polity, D. Reppin, M. Becker, P. Hering, P.J. Klar, Th Sander, C. Reindl, J. Benz, M. Eickhoff, C. Heiliger, M. Heinemann, J. Bläsing, A. Krost, S. Shokovets, C. Müller, C. Ronning, Phys. Status Solidi B 249, 1487 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    M. Ferhat, A. Zaoui, R. Ahuja, Appl. Phys. Lett. 94, 142502 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de FísicaUniversidade Federal de São CarlosSão CarlosBrazil

Personalised recommendations