Advertisement

Applied Physics A

, 124:773 | Cite as

Influence of Si nanowires on solar cell properties: effect of the temperature

  • O. V. Pylypova
  • A. A. Evtukh
  • P. V. Parfenyuk
  • I. M. Korobchuk
  • O. O. HavryliukEmail author
  • O. Yu. Semchuk
Article
  • 43 Downloads

Abstract

Silicon nanowires (Si NWs) are under active investigations as a promising material for solar cell applications. In this article, the results on temperature influence on Si NW solar cell parameters have been presented. It is known that solar cell parameters degrade at higher temperature. The influence of nanowire diameter and periodicity on solar cell temperature has been modeled by us based on the numerical calculation of the heating under influence of light with intensity of 1 kW/m2. The calculations showed the significant lower heating of solar cell (SC) with Si NWs in comparison with flat silicon or conical textured surfaces. Experimental results revealed significant influence of the temperature on main Si NW SC parameters. The influence of the temperature has been explained based on changing at heating of the silicon and radial p-n junction properties.

References

  1. 1.
    M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Prog. Photovolt. Res. Appl. 20, 12 (2012)  https://doi.org/10.1002/pip.2163 CrossRefGoogle Scholar
  2. 2.
    Z. Fan, D.J. Ruebusch, A.A. Rathore, R. Kapadia, O. Ergen, P.W. Leu, A. Javey, Nano Res. 2(11), 829 (2009).  https://doi.org/10.1007/s12274-009-9091-y CrossRefGoogle Scholar
  3. 3.
    Y.J. Hung, S.L. Lee, L.A. Coldren, Opt. Express 18(7), 6841 (2010).  https://doi.org/10.1364/OE.18.006841 ADSCrossRefGoogle Scholar
  4. 4.
    S. Sharma, K.K. Jain, A. Sharma, Mater Sci Appl. 6, 1145 (2015).  https://doi.org/10.4236/msa.2015.612113 CrossRefGoogle Scholar
  5. 5.
    C. Chen, R. Jia, H. Yue, H. Li, X. Liu, D. Wu, W. Ding, T. Ye, S. Kasai, H. Tamotsu, J. Chu, S. Wang, J. Appl. Phys. 108(9), 094315–094318 (2010).  https://doi.org/10.1063/1.3493733 ADSCrossRefGoogle Scholar
  6. 6.
    D. Kumar, S.K. Srivastava, P.K. Singh, M. Husain, V. Kumar, Sol Energy Mater. Sol Cells 95(1), 215 (2011).  https://doi.org/10.1016/j.solmat.2010.04.024 CrossRefGoogle Scholar
  7. 7.
    S. Nichkalo, A. Druzhinin, A. Evtukh, O. Bratus’, O. Steblova, Nanoscale Res. Lett. 12, 106 (2017).  https://doi.org/10.1186/s11671-017-1886-2 ADSCrossRefGoogle Scholar
  8. 8.
    Y. Xiu, S. Zhang, V. Yelundur, A. Rohatgi, D.W. Hess, C.P. Wong, Langmuir. 24, 10421 (2008)CrossRefGoogle Scholar
  9. 9.
    B. Ozdemir, M. Kulakci, R. Turan, H.E. Unalan, Nanotechnology. 22, 155606 (2011)  https://doi.org/10.1088/0957-4484/22/15/155606 ADSCrossRefGoogle Scholar
  10. 10.
    J.-Y. Li, C.-H. Hung, C.-Y. Chen, Sci. Rep. 7, 17177 (2017).  https://doi.org/10.1038/s41598-017-17516-6 ADSCrossRefGoogle Scholar
  11. 11.
    X. Li, Curr. Opin Solid State Mater. Sci. 16(2), 71 (2012).  https://doi.org/10.1016/j.cossms.2011.11.002 ADSCrossRefGoogle Scholar
  12. 12.
    K.Q. Peng, S.T. Lee, Adv. Mater. 23, 198 (2011).  https://doi.org/10.1002/adma.201002410 CrossRefGoogle Scholar
  13. 13.
    C.I. Yeo, Y.M. Song, S.J. Jang, Y.T. Lee, Opt. Express. 19, A1109 (2011)  https://doi.org/10.1364/OE.19.0A1109 ADSCrossRefGoogle Scholar
  14. 14.
    C.I. Yeo, J.B. Kim, Y.M. Song, Y.T. Lee, Nanoscale Res. Lett. 8, 159 (2013).  https://doi.org/10.1186/1556-276X-8-159 ADSCrossRefGoogle Scholar
  15. 15.
    S.K. Srivastava, D. Kumar, P.K. Singh, M.V. Kar, M. Kumar, Husain, Sol Energy Mater. Sol Cells. 94, 1506 (2010).  https://doi.org/10.1016/j.solmat.2010.02.033 CrossRefGoogle Scholar
  16. 16.
    J.Y. Jung, Z. Guo, S.W. Jee, H.D. Um, K.T. Park, J.H. Lee, Opt. Express 8, A286 (2010).  https://doi.org/10.1364/OE.18.00A286 CrossRefGoogle Scholar
  17. 17.
    S.K. Srivastava, D. Kumar, S.M. Vandana, R. Kumar, P.K. Singh, Sol Energy Mater Sol Cells. 100, 33 (2012).  https://doi.org/10.1016/j.solmat.2011.05.003 CrossRefGoogle Scholar
  18. 18.
    S.E. Han, G. Chen, Nano Lett. 10(3), 1012 (2011).  https://doi.org/10.1021/nl904187m ADSCrossRefGoogle Scholar
  19. 19.
    S.M. Sze, Physics of semiconductor devices (Wiley, New York, 1981)Google Scholar
  20. 20.
    N.I. Koroteev, I.L. Shumay, The physics of high-power laser radiation (Nauka, Moscow, 1991)Google Scholar
  21. 21.
    A.V. Lykov, The theory of thermoconductivity (Vyscha shkola, Moscow, 1967)Google Scholar
  22. 22.
    D. Levkin, East. Eur. J. Enterp. Technol. 58(4), 29 (2012)Google Scholar
  23. 23.
    M.S. Antimonov, V.A. Kudinov, E.V. Stefanyuk, Comput. Math. Math. Phy. 48, 648 (2008).  https://doi.org/10.1134/S096554250804012X CrossRefGoogle Scholar
  24. 24.
    V.A. Kudinov, E.V. Stefanyuk, M.S. Antimonov, J. Eng. Phys. Thermophys. 80(5), 1038 (2007).  https://doi.org/10.1007/s10891-007-0136-3 CrossRefGoogle Scholar
  25. 25.
    K.S. Essa, A.N. Mina, M. Higazy, Rom. J. Phy. 56(9–10), 1228 (2011)Google Scholar
  26. 26.
    A.M. Yang, C. Cattani, H. Jafari, X.J. Yang, Abstract Appl. Anal. 2013.  https://doi.org/10.1155/2013/462535 CrossRefGoogle Scholar
  27. 27.
    O.O. Havryliuk, O.Yu. Semchuk, Optoelectron. Inf. Power Technol. 24(2), 127 (2012)Google Scholar
  28. 28.
    C. Chartier, S. Bastide, C. Levy-Clement, Electrochim. Acta 53, 5509 (2008)CrossRefGoogle Scholar
  29. 29.
    C.-Y. Chen, T.-C. Wei, C.-T. Lin, J.-Y. Li, Sci. Rep. 7, 3164 (2017).  https://doi.org/10.1038/s41598-017-03498-y ADSCrossRefGoogle Scholar
  30. 30.
    Z. Huang, T. Shimizu, S. Senz, Z. Zhang, N. Geyer, U. Gosele, J. Phys. Chem. C 114, 10683 (2010)CrossRefGoogle Scholar
  31. 31.
    C.-Y. Chen, P.-H. Hsiao, T.-C. Wei, T.-C. Chen, C.-H. Tang, Phys. Chem. Chem. Phys. 19, 11786 (2017).  https://doi.org/10.1039/c7cp01674c CrossRefGoogle Scholar
  32. 32.
    C.-H. Tang, K.-Y. Chen, C.-Y. Chen, N. J. Chem. 42(16), 13797 (2018).  https://doi.org/10.1039/c8nj03015d CrossRefGoogle Scholar
  33. 33.
    M.L. Zhang, X.Q. Peng, X. Fan, J. Phys. Chem. C 112(12), 4444 (2008)CrossRefGoogle Scholar
  34. 34.
    X. Li, P.W. Bohn, Appl. Phys. Lett. 77, 2572 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • O. V. Pylypova
    • 2
  • A. A. Evtukh
    • 1
    • 2
  • P. V. Parfenyuk
    • 1
  • I. M. Korobchuk
    • 2
  • O. O. Havryliuk
    • 3
    Email author
  • O. Yu. Semchuk
    • 3
  1. 1.V. E. Lashkaryov Institute of Semiconductor Physics, NAS of UkraineKievUkraine
  2. 2.Institute of High TechnologiesTaras Shevchenko National University of KyivKievUkraine
  3. 3.Chuiko Institute of Surface Chemistry NAS of UkraineKievUkraine

Personalised recommendations