Advertisement

Applied Physics A

, 124:778 | Cite as

Structural, optical, and photocatalytic properties of Cd1−xS:Lax nanoparticles for optoelectronic applications

  • G. Murtaza
  • S. M. A. Osama
  • Murtaza Saleem
  • M. Hassan
  • N. R. K. Watoo
Article
  • 54 Downloads

Abstract

Cd1−xS:Lax nanoparticles with varying La and Cd concentrations have been prepared by microemulsion technique in the presence of cationic surfactant cetyl trimethyl ammonium bromide (CTAB). The structural phase for lanthanum-doped cadmium sulfide nanoparticles was investigated using X-ray diffraction revealing a cubic zinc blende structure for x = 0.0–0.06, while the hexagonal structure was obtained for higher La contents. The size of the nanoparticles was observed using field-emission scanning electron (FE-SEM) and transmission electron microscopy (TEM) and nanoparticles were found to exhibit a spherically symmetric shape. Energy-dispersive X-ray spectroscopy (EDX) was performed to analyze the composition of constituent elements. The measurements of photocatalytic hydrogen production indicated that La-doped CdS nanoparticles exhibit high H2-production rate as compared to that by the pure CdS. Diffuse UV–visible and photoluminescence spectra elucidated that bandgap varies inversely with the particle size; bandgap improves as particles size reduces for CdS with low La concentrations (~ 6%), in contrast, for higher La concentrations (8% and 10%) bandgap decays as the particle size improves. We believe that this work enriches the theory on La-doping CdS system and provides comprehensive guidance for the application of effective photocatalytic degradation.

References

  1. 1.
    W.T. Hsu, S.S. Ro, H.R. Hsu, Y.C. Liu, N-type CdS layer prepared by shallow chemical bath deposition on a 370 × 470 mm2 glass substrate. Thin Solid Films 529, 253–256 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    H. Yang, C. Huang, X. Li, R. Shi, K. Zhang, Luminescent and photocatalytic properties of cadmium sulfide nanoparticles synthesized via microwave irradiation. Mater. Chem. Phys. 90(1), 155–158 (2005)CrossRefGoogle Scholar
  3. 3.
    P. Elavarthi, A.A. Kumar, G. Murali, D.A. Reddy, K.R. Gunasekhar, Room temperature ferromagnetism and white light emissive CdS:Cr nanoparticles synthesized by chemical co-precipitation method. J. Alloys Compd. 656, 510–517 (2016)CrossRefGoogle Scholar
  4. 4.
    L. Saravanan, R. Jayavel, A. Pandurangan, L.J. Hsin, M.H. Yuan, Influence of Sm doping on the microstructural properties of CdS nanocrystals. Powder Technol. 266, 407–411 (2014)CrossRefGoogle Scholar
  5. 5.
    G. Pandey, S. Dixit, A.K. Shrivastava, Effect of Gd3+ doping and reaction temperature on structural and optical properties of CdS nanoparticles. Mater. Sci. Eng. B 200, 59–66 (2015)CrossRefGoogle Scholar
  6. 6.
    M. Elango, D. Nataraj, K.P. Nazeer, M. Thamilselvan, Synthesis and characterization of nickel doped cadmium sulfide (CdS:Ni2+) nanoparticles. Mater. Res. Bull. 47(6), 1533–1538 (2012)CrossRefGoogle Scholar
  7. 7.
    X. Yang, Z. Yan, L. Jiang, X. Wang, K. Zheng, Y. Wang, Q. Li, J. Wang, Synthesis and photocatalysis of Al doped CdS templated by non-surfactant hypocrellins. Proc. Environ. Sci. 18, 572–578 (2013)CrossRefGoogle Scholar
  8. 8.
    L. Saravanan, R. Jayave, A. Pandurangan, L.J. Hsin, M.H. Yuan, Synthesis, structural and optical properties of Sm3+ and Nd3+ doped cadmium sulfide nanocrystals. Mater. Res. Bull. 52, 128–133 (2014)CrossRefGoogle Scholar
  9. 9.
    S. Chandramohan, A. Kanjilal, J.K. Tripathi, S.N. Sarangi, R. Sathyamoorthy, T. Som, Structural and optical properties of Mn-doped CdS thin films prepared by ion implantation. J. Appl. Phys. 105(12), 123507 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    H. Jun, L. Ming, D.H. Kim, J.C. Lee, D.J. Lee, F.D. Jun, T.W. Kang, Magnetic properties and magnetoresistance of CdMnS:Au based structures prepared by co-evaporation. Chin. Phys. Lett. 27(7), 078501 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    K.W. Liu, Magnetic properties and tunneling magnetoresistance effect in Fe–CdFeS granular films. Appl. Phys. Lett. 90(9), 092507 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    P. Sudhagar, R. Sathyamoorthy, S. Chandramohan, S. Senthilarasu, S.H. Lee, Synthesis of Cd1–xMnxS nanoclusters by surfactant-assisted method: structural, optical and magnetic properties. Mater. Lett. 62(16), 2430–2433 (2008)CrossRefGoogle Scholar
  13. 13.
    T. Zhai, Z. Gu, H. Zhong, Y. Dong, Y. Ma, H. Fu, Y. Li, J. Yao, Design and fabrication of rocketlike tetrapodal CdS nanorods by seed-epitaxial metal—organic chemical vapor deposition. Cryst. Growth Des. 7(3), 488–491 (2007)CrossRefGoogle Scholar
  14. 14.
    W. Zhou, Y. Peng, Y. Yin, Y. Zhou, Y. Zhang, D. Tang, Broad spectral response photodetector based on individual tin-doped CdS nanowire. AIP Adv. 4(12), 123005 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    J.O. Joswig, M. Springborg, G. Seifert, Structural and electronic properties of cadmium sulfide clusters. J. Phys. Chem. B 104(12), 2617–2622 (2000)CrossRefGoogle Scholar
  16. 16.
    C.E. Bunker, B.A. Harruff, P. Pathak, A. Payzant, L.F. Allard, Y.P. Sun, Formation of cadmium sulfide nanoparticles in reverse micelles: extreme sensitivity to preparation procedure. Langmuir 20(13), 5642–5644 (2004)CrossRefGoogle Scholar
  17. 17.
    A.S. Vorokh, A.A. Rempel, Atomic structure of cadmium sulfide nanoparticles. Phys. Solid State 49(1), 148–153 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    Patterson, The Scherrer formula for X-ray particle size determination. Phys. Rev. 56(10), 978 (1939)ADSCrossRefGoogle Scholar
  19. 19.
    K.C. Wilson, M.B. Ahmed, Surface modification of cadmium sulfide thin film honey comb nanostructures: effect of in situ tin doping using chemical bath deposition. Appl. Surf. Sci. 361, 277–282 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    V.N. Astratov, V.N. Bogomolov, A.A. Kaplyanskii, A.V. Prokofiev, L.A. Samoilovich, S.M. Samoilovich, Y.A. Vlasov, Optical spectroscopy of opal matrices with CdS embedded in its pores: quantum confinement and photonic band gap effects. Il Nuovo Cimento D 17(11–12), 1349–1354 (1995)ADSCrossRefGoogle Scholar
  21. 21.
    H. Abrams, Grain size measurement by the intercept method. Metallography 4(1), 59–78 (1971)CrossRefGoogle Scholar
  22. 22.
    B.S. Rao, B.R. Kumar, V.R. Reddy, T.S. RAO, Preparation and characterization of CdS nanoparticles by chemical co-precipitation technique. Chalcogenide Lett. 8(3), 177–185 (2011)Google Scholar
  23. 23.
    K.P. Priyanka, V.R. Revathy, P. Rosmin, B. Thrivedu, K.M. Elsa, J. Nimmymol, K.M. Balakrishna, T. Varghese, Influence of La doping on structural and optical properties of TiO2 nanocrystals. Mater. Charact. 113, 144–151 (2016)CrossRefGoogle Scholar
  24. 24.
    M. Elango, K. Gopalakrishnan, S. Vairam, M. Thamilselvan, Structural, optical and magnetic studies on non-aqueous synthesized CdS:Mn nanomaterials. J. Alloys Compd. 538, 48–55 (2012)CrossRefGoogle Scholar
  25. 25.
    J.H. Nobbs, Kubelka Munk theory and the prediction of reflectance. Rev. Prog. Color. Relat. Top. 15(1), 66–75 (1985)CrossRefGoogle Scholar
  26. 26.
    B.S. Rao, V.R. Reddy, B.R. Kumar, T.S. Rao, Synthesis and characterization of nickel doped CdS nanoparticles. Int. J. Nanosci. 11(03), 1240006 (2012)CrossRefGoogle Scholar
  27. 27.
    B.G. Potter, J.H. Simmons, Quantum size effects in optical properties of CdS-glass composites. Phys. Rev. B Condens. Matter 37(18), 10838–10845 (1988)ADSCrossRefGoogle Scholar
  28. 28.
    X. Wang, D. Li, Y. Guo, X. Wang, Y. Dua, R. Sun, Preparation of lanthanide doped CdS, ZnS quantum dots in natural polysaccharide template and their optical properties. Opt. Mater. 34(4), 646–651 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    A.V. Isarov, J. Chrysochoos, Optical and photochemical properties of nonstoichiometric cadmium sulfide nanoparticles: surface modification with copper (II) ions. Langmuir 13(12), 3142–3149 (1997)CrossRefGoogle Scholar
  30. 30.
    B.S. Rao, B.R. Kumar, V.R. Reddy, T.S. Rao, G.V. Chalapathi, Influence on optical properties of nickel doped cadmium sulfide. Chalcogenide Lett. 8, 39–44 (2011)Google Scholar
  31. 31.
    V.H.-T. Thi, B.-K. Lee, Effective photocatalytic degradation of paracetamol using La-doped ZnO photocatalyst under visible light irradiation. Mater. Res. Bull. 96, 171–182 (2017)CrossRefGoogle Scholar
  32. 32.
    Q. Li, B. Guo, J. Yu, J. Ran, B. Zhang, H. Yan, J.R. Gong, Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J. Am. Chem. Soc. 133(28), 10878–10888 (2011)CrossRefGoogle Scholar
  33. 33.
    N. Vinothkumar, M. De, Enhanced photocatalytic hydrogen production from water–methanol mixture using cerium and nonmetals (B/C/N/S) co-doped titanium dioxide. Mater. Renew. Sustain. Energy 3, 25 (2014)CrossRefGoogle Scholar
  34. 34.
    V. Subramanian, E.E. Wolf, P.V. Kamat, Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. J. Am. Chem. Soc. 126, 4943–4950 (2004)CrossRefGoogle Scholar
  35. 35.
    C.-H. Liao, C.-W. Huang, J. Wu, Hydrogen production from semiconductor-based photocatalysis via water splitting. Catalysts 2, 490–516 (2012)CrossRefGoogle Scholar
  36. 36.
    L. Jing, S. Xiaojun, X. Baifu, W. Baiqi, C. Wimin, F. Hongganga, The preparation and characterization of La doped TiO2 nanoparticles and their photocatalytic activity. J. Solid State Chem. 177, 3375–3382 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre for Advanced Studies in PhysicsGC UniversityLahorePakistan
  2. 2.Department of Physics, School of Science and EngineeringLahore University of Management SciencesLahorePakistan
  3. 3.Materials Growth and Simulation Laboratory, Department of PhysicsUniversity of the PunjabLahorePakistan
  4. 4.Department of PhysicsUniversity of GujratGujratPakistan

Personalised recommendations