Applied Physics A

, 124:792 | Cite as

Influence of post-deposition annealing on the chemical states of crystalline tantalum pentoxide films

  • Israel PerezEmail author
  • Víctor Sosa
  • Fidel Gamboa
  • José Trinidad Elizalde Galindo
  • José L. Enríquez-Carrejo
  • Rurik Farías
  • Pierre Giovanni Mani González


We investigate the effect of post-deposition annealing (for temperatures from 848 K to 1273 K) on the chemical properties of crystalline \(\hbox {Ta}_2\hbox {O}_5\) films grown on Si(100) substrates by radio frequency magnetron sputtering. The atomic arrangement, as determined by X-ray diffraction, is predominately hexagonal (\(\delta -\hbox {Ta}_2\hbox {O}_5\)) for the films exposed to heat treatments at 948 K and 1048 K; orthorhombic (\(\beta -\hbox {Ta}_2\hbox {O}_5\)) for samples annealed at 1148 K and 1273 K; and amorphous for samples annealed at temperatures below 948 K. X-ray photoelectron spectroscopy for Ta 4f and O 1s core levels were performed to evaluate the chemical properties of all films as a function of annealing temperature. Upon analysis, it is observed the Ta 4f spectrum characteristic of Ta in \(\hbox {Ta}^{5+}\) and the formation of Ta-oxide phases with oxidation states \(\hbox {Ta}^{1+}\), \(\hbox {Ta}^{2+}\), \(\hbox {Ta}^{3+}\), and \(\hbox {Ta}^{4+}\). The study reveals that the increase in annealing temperature increases the percentage of the state \(\hbox {Ta}^{5+}\) and the reduction of the others indicating that higher temperatures are more desirable to produce \(\hbox {Ta}_2\hbox {O}_5\), however, there seems to be an optimal annealing temperature that maximizes the O% to Ta% ratio. We found that at 1273 K the ratio slightly reduces suggesting oxygen depletion.



We are grateful to Wilian Cauich and Daniel Aguilar for their technical support during the XPS and XRD sessions. Dr. Israel Perez is indebted to Dr. Alberto Herrera for helpful discussions and technical support in the XPS analysis. We also thank the anonymous reviewer and one of the editors of this journal for their comments that greatly improved the quality of this work. The authors gratefully acknowledge the support from the National Council of Science and Technology (CONACYT) Mexico and the program Cátedras CONACYT through Project 3035.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    T. Kaga, H. Shinriki, F. Murai, Y. Kawamoto, Y. Nakagone, F. Takeda, K. Itoh, DRAM manufacturing in the ’90s -Part 3: a case study. Semicond. Int. 6, 98–101 (1991)Google Scholar
  2. 2.
    K.W. Kwon, C.S. Kang, S.O. Park, H.K. Kang, S.T. Ann, Thermally robust Ta2O5 capacitor for the 256-Mbit DRAM. IEEE Trans. Electron. Devices. 43, 919–923 (1996)ADSCrossRefGoogle Scholar
  3. 3.
    C. Chaneliere, J.L. Autran, R.A.B. Devine, B. Baland, Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications. Mater. Sci. Eng. R-rep 22, 269–322 (1998)CrossRefGoogle Scholar
  4. 4.
    C. Chaneliere, S. Four, J.L. Autran, R.A.B. Devine, N.P. Sandler, Properties of amorphous and crystalline Ta2O5 thin films deposited on Si from a Ta(OC\(_2\)H\(_5\))\(_5\) precursor. Electrochem. J. Appl. Phys. 83, 4823–4829 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    R.H. Dennard, F.H. Gaensslen, H. Yu, V.L. Rideout, E. Bassous, A.R. LeBlanc, Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE J. Solid-State Circ. 9, 256–268 (1974)ADSCrossRefGoogle Scholar
  6. 6.
    S. Shibata, Dielectric constants of Ta2O5 thin films deposited by r.f. sputtering. Thin Solid Films 277, 1–4 (1996)ADSCrossRefGoogle Scholar
  7. 7.
    E. Atanassova, Thin RF sputtered and thermal Ta2O5 on Si for high density DRAM application. Microelectron. Reliab. 39, 1185–1217 (1999)CrossRefGoogle Scholar
  8. 8.
    J.D.T. Kruschwitz, W.T. Pawlewicz, Optical and durability properties of infrared transmitting thin films. Appl. Opt. 36, 2157–2159 (1997)ADSCrossRefGoogle Scholar
  9. 9.
    C. Chaneliere, S. Foura, J.L. Autran, R.A.B. Devine, Comparison between the properties of amorphous and crystalline Ta2O5 thin films deposited on Si. Microelectron. Reliab. 39, 261–268 (1999)CrossRefGoogle Scholar
  10. 10.
    S.P. Garg, N. Krishnamurthy, A. Awashi, M. Venkatraman, The O-Ta (Oxygen-Tantalum) system. J. Phase Equilib. 17, 63–77 (1996)CrossRefGoogle Scholar
  11. 11.
    K.T. Jacob, C. Shekhar, Y. Waseda, An update on the thermodynamics of Ta2O5. J. Chem. Thermodyn. 41, 748–753 (2009)CrossRefGoogle Scholar
  12. 12.
    E. Atanassova, T. Dimitrova, J. Koprinarova, AES and XPS study of thin RF-sputtered Ta2O5 layers. Appl. Surf. Sci. 84, 193–202 (1995)ADSCrossRefGoogle Scholar
  13. 13.
    H. Shinriki, M. Nakata, \(\text{ UV-O }_3\) and Dry-\(\text{ O }_2\): Two-step Annealed Chemical Vapor-Deposited Ta2O5 Films for Storage Dielectrics of 64-Mb DRAMs. IEEE Trans. Electron Devices ED. 38, 455–462 (1991)ADSCrossRefGoogle Scholar
  14. 14.
    S. Kamiyama, P.-Y. Lesaicherre, H. Suzuki, A. Sakai, I. Nishiyama, A. Ishitani, J. Electrochem. Soc. 140, 1617 (1993)CrossRefGoogle Scholar
  15. 15.
    G.Q. Lo, D.L. Kwong, S. Lee, Appl. Phys. Lett. 62, 973 (1993)ADSCrossRefGoogle Scholar
  16. 16.
    Y. Kuo, Reactive Ion Etching of Sputtered Deposited Tantalum Oxide and its Etch Selectivity to Tantalum. J. Electrochem. Soc. 139, 579–583 (1992)CrossRefGoogle Scholar
  17. 17.
    N. Donkov, A. Zykova, V. Safonov, R. Rogowska, J. Smolik, Tantalum pentoxide ceramic coatings deposition on ti4a16v substrates for biomedical applications. Probl. At. Sci. Technol. Plasma Phys. Ser. 17, 131–133 (2011)Google Scholar
  18. 18.
    T. Dimitrova, U,K. Arshak, E. Atanassova, Crystallization effects in oxygen annealed Ta2O5 thin films on Si. Thin Solid Films 38, 31–38 (2001)CrossRefGoogle Scholar
  19. 19.
    S.-J.J. Wu, B. Houng, B.S. Huang, Effect of growth and annealing temperatures on crystallization of tantalum pentoxide thin film prepared by RF magnetron sputtering method. J. Alloys Compd. 475, 488–493 (2009)CrossRefGoogle Scholar
  20. 20.
    D. Cristea, D. Constantin, A. Crisan, C.S. Abreu, J.R. Gomes, N.P. Barradas, E. Alves, C. Moura, F. Vaz, L. Cunha, Properties of tantalum oxynitride thin films produced by magnetron sputtering: the influence of processing parameters. Vacuum 98, 63–69 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    I. Perez, J.L. Enríquez-Carrejo, V. Sosa, F. Gamboa, J.R. Farias-Mancillas, J.T. Elizalde-Galindo, Evidence for structural transition in crystalline tantalum pentoxide films grown by RF magnetron sputtering. J. Alloys. Comp. 712, 303–210 (2014)CrossRefGoogle Scholar
  22. 22.
    E. Atanassova, D. Spassov, X-ray photoelectron spectroscopy of thermal thin Ta2O5 films on Si. Appl. Surf. Sci. 135, 71–82 (1998)ADSCrossRefGoogle Scholar
  23. 23.
    Takashi Tsuchiya, Hideto Imai, Shogo Miyoshi, Per-Anders Glans, Jinghua Guo, Shu Yamaguchi, X-ray absorption, photoemission spectroscopy, and Raman scattering analysis of amorphous tantalum oxide with a large extent of oxygen nonstoichiometry. Phys. Chem. Chem. Phys. 13, 17013–17018 (2011)CrossRefGoogle Scholar
  24. 24.
    S.-C. Wang, K.-Y. Liu, J.-L. Huang, Tantalum oxide film prepared by reactive magnetron sputtering deposition for all-solid-state electrochromic device. Thin Solid Films 520, 1454–1459 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    S.V. Jagadeesh-Chandra, C.-J. Choi, S. Uthanna, G. Mohan-Rao, Structural and electrical properties of radio frequency magnetron sputtered tantalum oxide films: Influence of post-deposition annealing. Mater. Sci. Semicond. Process. 13, 245–251 (2010)CrossRefGoogle Scholar
  26. 26.
    A. Herrera-Gomez, M. Bravo-Sanchez, O. Ceballos-Sanchez, M.O. Vazquez-Lepe, Practical Methods for Background Subtraction in Photoemission Spectra. Surf. Interface Anal. 46, 897–905 (2014)CrossRefGoogle Scholar
  27. 27.
    A. Fukumoto, K. Miwa, Prediction of hexagonal Ta2O5 structure by first-principles calculations. Phys. Rev. B 55, 11155 (1997)ADSCrossRefGoogle Scholar
  28. 28.
    Y.-N. Wu, L. Li, H.-P. Cheng, First-principles studies of Ta2O5 polymorphs. Phys. Rev. B 83, 144105 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    S. Pérez-Walton, C. Valencia-Balvín, A.C.M. Padilha, G.M. Dalpian, J.M. Osorio-Guillén, A search for the ground state structure and the phase stability of tantalum pentoxide. J. Phys. Condens. Matt. 28, 035801–11 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    J.Y. Kim, B. Magyari-Köpe, K.-J. Lee, H.-S. Kim, S.-H. Lee, Y. Nishi, Electronic structure and stability of low symmetry Ta2O5 polymorphs. Phys. Status Solidi RRL 8, 560–565 (2014)CrossRefGoogle Scholar
  31. 31.
    S.-H. Lee, J. Kim, S.-J. Kim, S. Kim, G.-S. Park, Hidden structural order in orthorhombic Ta2O5. Phys. Rev. Lett. 110, 235502–5 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    J. Lee, W. Lu, E. Kioupakis, Electronic properties of tantalum pentoxide polymorphs from first-principles calculations. Appl. Phys. Lett. 105, 202108–5 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    Z. Helali, M. Calatayud, C. Minot, Novel Delta-Ta2O5 Structure Obtained from DFT Calculations. J. Phys. Chem. C. 118, 13652–13658 (2014)CrossRefGoogle Scholar
  34. 34.
    Y. Guo, J. Robertson, Comparison of oxygen vacancy defects in crystalline and amorphous Ta2O5. Microelectron. Eng. 147, 254–259 (2015)CrossRefGoogle Scholar
  35. 35.
    J.-Y. Kim, B. Magyari-Köpe, Y. Nishi, J.-H. Ahn, First-principles study of carbon impurity effects in the pseudo-hexagonal Ta2O5. Curr. Appl. Phys. 16, 638–643 (2016)ADSCrossRefGoogle Scholar
  36. 36.
    Y. Yang, Y. Kawazoe, Prediction of a new ground-state crystal structure of Ta2O5. Phys. Rev. Mat. 2, 034602 (2018)Google Scholar
  37. 37.
    X.M. Wu, P.K. Wu, T.M. Lu, E.J. Rymaszewski, Reactive sputtering deposition of low temperature tantalum suboxide thin films. Appl. Phys. Lett. 62, 3264–3266 (1993)ADSCrossRefGoogle Scholar
  38. 38.
    K. Chen, G.R. Yang, M. Nielsen, T.M. Lu, E.J. Rymaszewski, X-ray photoelectron spectroscopy study of Al/Ta2O5 and Ta2O5/Al buried interfaces. Appl. Phys. Lett. 70, 399–401 (1997)ADSCrossRefGoogle Scholar
  39. 39.
    A. Muto, F. Yano, Y. Sugawara, S. Iijima, The study of ultrathin tantalum oxide films before and after annealing with X-ray photoelectron spectroscopy. Jpn. J. Appl. Phys. 33, 2699–2702 (1994)ADSCrossRefGoogle Scholar
  40. 40.
    R. Simpson, R.G. White, J.F. Watts, M.A. Baker, XPS investigation of monatomic and cluster argon ion sputtering of tantalum pentoxide. Appl. Surf. Sci. 405, 79–87 (2017)ADSCrossRefGoogle Scholar
  41. 41.
    H. Szymanowski, O. Zabeida, J.E. Klemberg-Sapieha, L. Martinu, Optical properties and microstructure of plasma deposited Ta2O5 and Nb\(_2\)O\(_5\) films. J. Vac. Sci. Technol. A 23, 241–247 (2005)ADSCrossRefGoogle Scholar
  42. 42.
    E. Atanassova, M. Kalitzova, G. Zollo, A. Paskaleva, A. Peeva, M. Georgieva, G. Vitalib, High temperature-induced crystallization in tantalum pentoxide layers and its influence on the electrical properties. Thin Solid Films 426, 191–199 (2003)ADSCrossRefGoogle Scholar
  43. 43.
    O. Kerrec, D. Devilliers, H. Groult, P. Marcus, Study of dry and electrogenerated Ta2O5 and Ta/Ta2O5/Pt structures by XPS. Mat. Sci. Eng B55, 134–142 (1998)CrossRefGoogle Scholar
  44. 44.
    M.V. Ivanov, T.V. Perevalov, V.S. Aliev, V.A. Gritsenko, V.V. Kaichev, Electronic structure of Ta2O5 with oxygen vacancy: ab initio calculations and comparison with experiment. J. Appl. Phys. 110, 024115 (2011)ADSCrossRefGoogle Scholar
  45. 45.
    M.V. Ivanov, T.V. Perevalov, VSh Aliev, V.A. Gritsenko, V.V. Kaichev, Ab initio simulation of the electronic structure of Ta2O5 with oxygen vacancy and comparison with experiment. J. Exp. Theo. Phys. 112, 1035–1041 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Council of Science and Technology (CONACYT)-Institute of Engineering and TechnologyUniversidad Autónoma de Ciudad JuárezJuárezMexico
  2. 2.Applied Physics Department, CINVESTAV Unidad MéridaMéridaMexico
  3. 3.Institute of Engineering and TechnologyUniversidad Autónoma de Ciudad JuárezJuárezMexico

Personalised recommendations