Applied Physics A

, 124:767 | Cite as

Evolution of defects and their effect on photoluminescence and conducting properties of green-synthesized ZnS nanoparticles

  • B. Lalitha Devi
  • K. Mohan RaoEmail author
  • Dhananjaya Kekuda
  • D. Ramananda


We have grown ZnS (zinc sulfide) nanoparticles (NPs) by hydrothermal and microwave (MW) heating method and a comparative study on the physical properties was carried out. Zinc acetate dihydrate (ZAD) and thioacetamide (TA) were used as Zn and S precursors, respectively. X-ray diffraction (XRD) and selected area electron diffraction (SAED) pattern revealed the cubic structure for ZnS and nanocrystalline nature of the samples. The careful observation of the XRD patterns of the samples grown by hydrothermal and microwave heating method indicate that microwave-synthesized ZnS (ZnS–MW) samples were strained compared to those grown by conventional hydrothermal methods. Uniform sized smaller nanoparticles were formed during microwave irradiation in a much shorter time. UV–Vis absorption spectra indicated quantum confinement effect. The emission peaks in photoluminescence spectra indicate the presence of various point defects in the samples. In the microwave synthesized sample, nucleation and growth process of the ZnS crystallites are very quick, leading to the formation of defects. The dielectric studies of both types of the samples show a typical behavior of polycrystalline semiconducting material. Under the applied A.C. fields, the conduction phenomena provide sufficient evidence for the electronic hopping between localized sites. Lower values of activation energy obtained for both dipolar relaxation and DC conductivity in the case of microwave synthesized sample indicate the applicability of such materials in various switching applications.



The authors thank UGC-DAE Consortium for Scientific Research, Mumbai Centre for dielectric measurements, DST-SAIF centre at Karnatak University-Dharwad for photoluminescence measurements, Manipal Academy of Higher Education- Manipal for other characterisations and Bhandarkars’ Arts and Science college, Kundapura for sample preparation facilities. One of the authors, Lalitha Devi B thanks the University Grants Commission, Government of India, for teacher fellowship.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    A.P. Alivisatos, Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933 (1996)ADSCrossRefGoogle Scholar
  2. 2.
    X. Fang, T. Zhai, U.K. Gautam, L. Li, L. Wu, Y. Bando, D. Golberg, ZnS nanostructures: from synthesis to applications. Prog. Mater Sci. 56, 175 (2011)CrossRefGoogle Scholar
  3. 3.
    D.W. Synnott, M.K. Seery, S.J. Hinder, G. Michlits, S.C. Pillai, Anti-bacterial activity of indoor-light activated photocatalysts. Appl. Catal. B Environ. 130–131, 106 (2013)CrossRefGoogle Scholar
  4. 4.
    J. Souriau, Y. Dong, J. Penczek, H.G. Paris, C.J. Summers, Cathodoluminescent properties of coated SrGa 2 S4: Eu2+ and ZnS:Ag, Cl phosphors for field emission display applications. Mater. Sci. Eng. B 76, 165 (2000)CrossRefGoogle Scholar
  5. 5.
    I.O. Oladeji, L. Chow, Synthesis and processing of CdS/ZnS multilayer films for solar cell application. Thin Solid Films 474, 77 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    M. Koneswaran, R. Narayanaswamy, l-Cysteine-capped ZnS quantum dots based fluorescence sensor for Cu2+ ion. Sensors Actuators, B Chem. 139, 104 (2009)CrossRefGoogle Scholar
  7. 7.
    Z. Li, J. Wang, X. Xu, X. Ye, The evolution of optical properties during hydrothermal coarsening of ZnS nanoparticles. Mater. Lett. 62, 3862 (2008)CrossRefGoogle Scholar
  8. 8.
    C. Ramamoorthy, V. Rajendran, Formation of solid and hollow sphere ZnS nanoparticles by hydrothermal process and their structural, optical and photocatalytic activity. Appl. Phys. A 124, 500 (2018)ADSCrossRefGoogle Scholar
  9. 9.
    N.I. Kovtyukhova, E.V. Buzaneva, C.C. Waraksa, T.E. Mallouk, Ultrathin nanoparticle ZnS and ZnS: Mn films : surface sol–gel synthesis, morphology, photophysical properties. Mater. Sci. Eng. B 70, 411 (2000)CrossRefGoogle Scholar
  10. 10.
    J. Yuan, K. Kajiyoshi, K. Yanagisawa, Fabrication of silica nanocoatings on ZnS–type phosphors via a sol–gel route using cetyltrimethylammonium chloride dispersant. Mater. Lett. 60, 1284 (2006)CrossRefGoogle Scholar
  11. 11.
    J.F. Xu, W. Ji, J.Y. Lin, S.H. Tang, Y.W. Du, Preparation of ZnS nanoparticles by ultrasonic radiation method. Appl. Phys. A 641, 639 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    R.S. Sudar, D. Pukazhselvan, C.K. Mahadevan, Studies on the synthesis of cubic ZnS quantum dots, capping and optical–electrical characteristics. J. Alloys Compd. 517, 139 (2012)CrossRefGoogle Scholar
  13. 13.
    U. Baishya, D. Sarkar, ZnS nanocomposite formation: effect of ZnS source concentration ratio. Indian J. Pure Appl. Phys. 49, 186 (2011)Google Scholar
  14. 14.
    K.J. Rao, B. Vaidhyanathan, M. Ganguli, P.A. Ramakrishnan, Synthesis of inorganic solids using microwaves. Chem. Mater. 11, 882 (1999)CrossRefGoogle Scholar
  15. 15.
    S. Naween Dahal, J. Garcıa, S.M. Zhou, Humphrey, Beneficial effects of microwave-assisted heating versus conventional heating in noble metal nanoparticle synthesis. ACS Nano 6, 9433 (2012)CrossRefGoogle Scholar
  16. 16.
    J. Zhu, M. Zhou, J. Xu, X. Liao, Preparation of CdS and ZnS nanoparticles using microwave irradiation. Mater. Lett. 47, 25 (2001)CrossRefGoogle Scholar
  17. 17.
    Y. Zhao, J.M. Hong, J.J. Zhu, Microwave-assisted self-assembled ZnS nanoballs. J. Cryst. Growth 270, 438 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    Q. Ma, Y. Wang, J. Kong, H. Jia, Tunable synthesis, characterization and photocatalytic properties of various ZnS nanostructures. Ceram. Int. 42, 2854 (2016)CrossRefGoogle Scholar
  19. 19.
    B.D. Cullity, Elements of X-ray diffraction, 2nd edn. (Addison Wiley Publishing Company, Newyork, 1972), p. 110Google Scholar
  20. 20.
    S. Lee, D. Song, D. Kim, J. Lee, S. Kim, I.Y. Park, Y.D. Choi, Effects of synthesis temperature on particle size/shape and photoluminescence characteristics of ZnS:Cu nanocrystals. Mater. Lett. 58, 342 (2004)CrossRefGoogle Scholar
  21. 21.
    A.L. Rogach, A. Kornowski, M. Gao, A. Eychmüller, H. Weller, Synthesis and characterization of a size series of extremely small thiol-stabilized CdSe nanocrystals. J Phys Chem B 103, 3065 (1999)CrossRefGoogle Scholar
  22. 22.
    J. Tauc, Menth, states in Gap. J Non-crystalline Solids 8, 569 (1972)ADSCrossRefGoogle Scholar
  23. 23.
    L. E. Brus, electron–electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J Chem. Phys 80, 4403 (1984)ADSCrossRefGoogle Scholar
  24. 24.
    S. Mondal, S. Sudhu, S. Bhattacharya, S.K. Saha, Strain-induced tunable band gap and morphology-dependent photocurrent in RGO–CdS nanostructures. J. Phys. Chem. C 119, 27749 (2015)CrossRefGoogle Scholar
  25. 25.
    D. Denzler, M. Olschewski, K. Sattler, Luminescence studies of localized gap states in colloidal ZnS nanocrystals. J. Appl. Phys. 84, 2841 (1998)ADSCrossRefGoogle Scholar
  26. 26.
    A.K. Kole, P. Kumbhakar, Effect of manganese doping on the photoluminescence characteristics of chemically synthesized zinc sulfide nanoparticles. Appl. nano sci 2, 15 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    J.F. Suyver, S.F. Wuister, J.J. Kelly, A. Meijerink, Synthesis and photoluminescence of nanocrystalline ZnS: Mn2+. Nano Lett. 1, 429 (2001)ADSCrossRefGoogle Scholar
  28. 28.
    J. Bohnemann, R. Libanori, M.L. Moreira, E. Longo, High-efficient microwave synthesis and characterisation of SrSnO3. Chem. Eng. J. 155, 905 (2009)CrossRefGoogle Scholar
  29. 29.
    M. Sookhakian, Y.M. Amin, W.J. Basirun, M.T. Tajabadi, N.Kamarulzaman Synthesis, structural and optical properties of type-II ZnO–ZnS core–shell nanostructure. J. Lumin. 145, 244 (2014)CrossRefGoogle Scholar
  30. 30.
    B. Poornaprakash, U. Chalapathi, S.V.P. Vattikuti, Optical, and magnetic properties of Fe, Co, and Ni doped ZnS nanoparticles. Appl. Phys. A 123, 275 (2017)ADSCrossRefGoogle Scholar
  31. 31.
    N. Karar, Photoluminescence from doped ZnS nanostructures. Solid State Commun. 142, 261 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    X. Liu, Z. Li, C. Zhao, W. Zhao, J. Yang, Y. Wang, F. Li, Facile synthesis of core–shell CuO/Ag nanowires with enhanced photocatalytic and enhancement in photocurrent. J. Colloid Interface Sci. 419, 9 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    K.C. Anoop Chandran, George, Defect induced modifications in the optical, dielectric, and transport properties of hydrothermally prepared ZnS nanoparticles and nanorods. J. Nanopart. Res. 16, 2238 (2014)CrossRefGoogle Scholar
  34. 34.
    R. Gerhardt, Impedance and dielectric spectroscopy revisited—distinguishing localised relaxations from long range conductivity. J. Phys.Chem.Solids 55, 1491 (1994)ADSCrossRefGoogle Scholar
  35. 35.
    J.C. Maxwell, A Treatise on Electricity and Magnetism (Oxford University Press, New York, 1973)zbMATHGoogle Scholar
  36. 36.
    T. Shekharam, V.L. Rao, G. Yellaiah, T.M. Kumar, M. Nagabhushanam, AC conductivity, dielectric and impedance studies of Cd0.8xPbxZn0.2S mixed semiconductor compounds. J. Alloys Compd. 617, 952 (2014)CrossRefGoogle Scholar
  37. 37.
    A.S. Roy, S. Gupta, S. Sindhu, A. Parveen, P.C. Ramamurthy, Dielectric properties of novel PVA/ZnO hybrid nanocomposite films. Compos. Part B Eng. 47, 314 (2013)CrossRefGoogle Scholar
  38. 38.
    A.K. Jonscher, A new understanding of the dielectric relaxation of solids. J. Mater. Sci. 16, 2037 (1981)ADSCrossRefGoogle Scholar
  39. 39.
    A. Artemenko, S. Payan, A. Rousseau, D. Levasseur, E. Arveux, G. Guegan, M. Maglione, Low temperature dielectric relaxation and charged defects in ferroelectric thin films Low temperature dielectric relaxation and charged defects in ferroelectric thin films. AIP Adv. 3, 0 42111 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • B. Lalitha Devi
    • 1
  • K. Mohan Rao
    • 1
    Email author
  • Dhananjaya Kekuda
    • 1
  • D. Ramananda
    • 2
  1. 1.Department of Physics, Manipal Institute of TechnologyManipal Academy of Higher EducationManipalIndia
  2. 2.Department of PhysicsBhandarkars’ Arts and Science CollegeKundapuraIndia

Personalised recommendations