Advertisement

Applied Physics A

, 124:766 | Cite as

Strong third-order optical nonlinearities of Ag nanoparticles synthesized by laser ablation of bulk silver in water and air

  • G. S. Boltaev
  • R. A. GaneevEmail author
  • P. S. Krishnendu
  • S. K. Maurya
  • P. V. Redkin
  • K. S. Rao
  • K. Zhang
  • Chunlei GuoEmail author
Article
  • 121 Downloads

Abstract

We demonstrate the correlation between strong nonlinear optical response of silver nanoparticles (Ag NPs) out of plasmon resonance and efficient third harmonic generation in the plasmas containing Ag NPs. The dynamics of nonlinear optical response of the 8 nm and 50 nm Ag NPs prepared by laser ablation of bulk silver in deionized water using 6 ns, 200 ps, and 60 fs laser pulses is systematically analyzed. Their optical limiting properties are studied at the wavelengths of 800 and 355 nm, using femtosecond and nanosecond laser pulses. Nonlinear absorption coefficient of 8 nm Ag NPs at the wavelength of 1064 nm was measured to be as high as 3 × 10−5 cm W−1. Nonlinear refraction shows the change of sign with variation of the wavelength and duration of probe laser pulses. The theoretical calculation of silver ablation shows the formation of a few nanometer sized particles. We also analyze third harmonic generation in the laser-produced plasmas containing Ag NPs and attribute the enhancement of this process to the influence of small silver clusters. The conversion efficiency of 800 nm towards the third harmonic was measured to be 4 × 10−3, which was a few times larger compared with similar process in air.

Notes

Acknowledgements

RAG thanks the financial support from Chinese Academy of Sciences President’s International Fellowship Initiative (Grant no. 2018VSA0001).

Funding

Natural Science Foundation of China (61774155, 61705227), National Key Research and Development Program of China (2017YFB1104700).

References

  1. 1.
    T. Jia, M. Baba, M. Suzuki, R.A. Ganeev, H. Kuroda, J. Qiu, X. Wang, R. Li, Z. Xu, Fabrication of two-dimensional periodic nanostructures by two-beam interference of femtosecond pulses. Opt. Express 16, 1874 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    L. Jiang, A. Wang, B. Li, T. Cui, Y. Lu, Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application. Light Sci. Appl. 7, 17134 (2018)CrossRefGoogle Scholar
  3. 3.
    R.A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, H. Kuroda, Low- and high-order nonlinear optical properties of BaTiO3 and SrTiO3 nanoparticles. J. Opt. Soc. Am. B 25, 325 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    E.V. Garcia Ramirez, S.A. Sabinas Hernandes, D. Ramires Martines, G. Diaz, J.A. Reyes, Esqueda, Third order nonlinear optics in Ag nanocubes: local and nonlocal optical responses as a function of excitation wavelength and particles. Opt. Express 25, 31064 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    S. Porel, N. Venkatram, D. Narayana Rao, T.P. Radhakrishnan, Optical power limiting in the femtosecond regime by silver nanoparticle–embedded polymer film. J. Appl. Phys. 102, 033107 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    O. Muller, S. Dengler, G. Ritt, B. Eberle, Size and shape effects on the nonlinear optical behavior of silver nanoparticles for power limiters. Appl. Opt. 52, 139 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    R.A. Ganeev, M. Baba, A.I. Ryasnyansky, M. Suzuki, H. Kuroda, Laser ablation of GaAs in liquids: structural, optical, and nonlinear optical characteristics of colloidal solutions. Appl. Phys. B 80, 595 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    C.H. Bae, S.H. Nam, S.M. Park, Formation of Ag NPs by laser ablation of a silver target in NaCl solution. Appl. Sur. Sci. 197–198, 628 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    M. Procházka, J. Śtěpánek, B. Vlčková, I. Srnová, P. Malý, Laser ablation: preparation of “chemically pure” Ag colloids for surface-enhanced Raman scattering spectroscopy. J. Mol. Struct. 410–411, 213 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    K.G. Stamplecoskie, J.C. Scaiano, V.S. Tiwari, H. Anis, Optimal size of silver nanoparticles for surface-enhanced Raman spectroscopy. J. Phys. Chem. C 115, 1403 (2011)CrossRefGoogle Scholar
  11. 11.
    M. Darroudi, M. Ahmad, R. Zamiri, R. Abdullah, A. Ibrahim, N. Shameli, K. Shahril, M. Husin, Preparation and characterization of gelatin mediated Ag NPs by laser ablation. J. Alloys Compd. 509, 1301 (2011)CrossRefGoogle Scholar
  12. 12.
    M. Valverde-Alva, T. García-Fernández, M. Villagrán-Muniz, C. Sánchez-Aké, R. Castañeda-Guzmán. E. Esparza-Alegría. C. Sánchez-Valdés. J. Llamazares, C. Herrera, Synthesis of Ag NPs by laser ablation in ethanol: a pulsed photoacoustic study. Appl. Surf. Sci. 355, 341 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    V. Nikolov, R. Nikov, I. Dimitrov, N. Nedyalkov, P. Atanasov, M. Alexandrov, D. Karashanova, Modification of the Ag NPs size-distribution by means of laser light irradiation of their water suspensions. Appl. Surf. Sci. 280, 55 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    M. Darroudi, M. Ahmad, R. Zamiri, A. Abdullah, N. Ibrahim, A. Sadrolhosseini, Time-dependent preparation of gelatin-stabilized Ag NPs by pulsed Nd:YAG laser. Solid Stat. Sci. 13, 520 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    R. Das, S. Nath, D. Chakdar, G. Gope, R. Bhattacharjee, Synthesis of Ag NPs and their optical properties. J. Exp. Nanosci. 5, 357 (2010)CrossRefGoogle Scholar
  16. 16.
    D. Rativa, R.E. De Araujo, A.S.L. Gomes, One photon nonresonant high-order nonlinear optical properties of Ag NPs in aqueous solution. Opt. Express 16, 19244 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    M. Mashayekh, D. Dorranian, Size-dependent nonlinear optical properties and thermal lens in Ag NPs. Optik 125, 5612 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    R.A. Ganeev, M. Baba, A.I. Ryasnyansky, M. Suzuki, H. Kuroda, Characterization of optical and nonlinear optical properties of Ag NPs prepared by laser ablation in various liquids. Opt. Commun. 240, 437 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    R.A. Ganeev, A.I. Ryasnyansky, A.L. Stepanov, T. Usmanov, Saturated absorption and reverse saturated absorption of Cu:SuO2 at λ = 532 nm. Phys. Status Solidi B 241, R1 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    M. López-Arias, M. Oujja, M. Sanz, R.A. Ganeev, G.S. Boltaev, N.K. Satlikov, R.I. Tugushev, T. Usmanov, M. Castillejo, Low-order harmonic generation in metal ablation plasmas in nanosecond and picosecond regimes. J. Appl. Phys. 111, 043111 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    R.A. Ganeev, M. Suzuki, M. Baba, H. Kuroda, High harmonic generation from the laser plasma produced by the pulses of different duration. Phys. Rev. A 76, 023805 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    T. Ozaki, L.B. Elouga Bom, R. Ganeev, J.-C. Kieffer, M. Suzuki, H. Kuroda, Intense harmonic generation from silver ablation. Laser Part. Beams 25, 321 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    H. Singhal, R.A. Ganeev, P.A. Naik, J.A. Chakera, U. Chakravarty, H.S. Vora, A.K. Srivastava, C. Mukherjee, C.P. Navathe, S.K. Deb, P.D. Gupta, High-order harmonic generation in a plasma plume of in situ laser-produced silver nanoparticles. Phys. Rev. A 82, 043821 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    D.S. Ivanov, L.V. Zhigilei, Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films. Phys. Rev. B 68, 064114 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tünnermann, Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A 63, 109 (1996)ADSCrossRefGoogle Scholar
  26. 26.
    J. Stadler, R. Mikulla, H.-R. Trebin, IMD: a software package for molecular dynamics studies on parallel computers. Int. J. Mod. Phys. C 8, 1131 (1997)ADSCrossRefGoogle Scholar
  27. 27.
    R.A. Ganeev, Nonlinear refraction and nonlinear absorption of various media. J. Opt. A 7, 717 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    Y.-P. Sun, J.E. Riggs, H.W. Rollins, R. Guduru, Strong optical limiting of silver-containing nanocrystalline particles in stable suspension. J. Phys. Chem. B 103, 77 (1999)CrossRefGoogle Scholar
  29. 29.
    N. Faraji, W.M.M. Yunus, A. Kharazmi, E. Saion, M. Shahmiri, N. Tamchek, Synthesis, characterization and nonlinear optical properties of silver/PVA nanocomposites. J. Eur. Opt. Soc. Rapid Publ. 7, 12040 (2012)CrossRefGoogle Scholar
  30. 30.
    R.A. Ganeev, A.I. Ryasnyansky, S.R. Kamalov, M.K. Kodirov, T. Usmanov, Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals. J. Phys. D Appl. Phys. 34, 1602 (2001)ADSCrossRefGoogle Scholar
  31. 31.
    R.A. Ganeev, A.S. Zakirov, G.S. Boltaev, R.I. Tugushev, T. Usmanov, P.K. Khabibullaev, T.W. Kang, A.A. Saidov, Structural, optical, and nonlinear optical absorption/refraction studies of the manganese nanoparticles prepared by laser ablation in ethanol. Opt. Mater. 33, 419 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    R. Sato, M. Ohnuma, K. Oyoshi, Y. Takeda, Spectral investigation of nonlinear local field effects in Ag nanoparticles. J. Appl. Phys. 117, 113101 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    R.A. Ganeev, A.I. Ryasnyansky, A.L. Stepanov, T. Usmanov, Characterization of nonlinear-optical parameters of copper- and silver-doped silica glass. Phys. Status Solidi B 241, 935 (2004)ADSCrossRefGoogle Scholar
  34. 34.
    G.K. Podagatlapalli, S. Hamad, S.P. Tewari, S. Sreedhar, M.D. Prasad, S.V. Rao, Silver nano-entities through ultrafast double ablation in aqueous media for surface enhanced Raman scattering and photonics applications. J. Appl. Phys. 113, 073106 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    K. Kim, S. Choe, Ultrafast nonlinear optical responses of dielectric composite materials containing metal nanoparticles with different sizes and shapes. Plasmonics 12, 855 (2017)CrossRefGoogle Scholar
  36. 36.
    V. Halte, J.-Y. Bigot, B. Palpant, M. Broyer, B. Prével, A. Pérez, Size dependence of the energy relaxation in Ag NPs embedded in dielectric matrices. Appl. Phys. Lett. 75, 3799 (1999)ADSCrossRefGoogle Scholar
  37. 37.
    H. Sanchez-Esquivel, K.Y. Raygoza-Sanchez, R. Rangel-Rojo, B. Kalinic, N. Michieli, T. Cesca, G. Mattei, Ultrafast dynamics in the nonlinear optical response of silver nanoprisms ordered arrays. Nanoscale 10, 5182 (2018)CrossRefGoogle Scholar
  38. 38.
    C.Y. Shih, C. Wu, M.V. Shugaev, L.V. Zhigilei, Atomistic modeling of nanoparticle generation in short pulse laser ablation of thin metal films in water. J. Colloid Interface Sci. 489, 3 (2017)ADSCrossRefGoogle Scholar
  39. 39.
    M. Masnavi, M. Nakajima, K. Horioka, H.P. Araghy, A. Endo, Simulation of particle velocity in a laser-produced tin plasma extreme ultraviolet source. J. Appl. Phys. 109, 123306 (2011)ADSCrossRefGoogle Scholar
  40. 40.
    H. Singhal, R.A. Ganeev, P.A. Naik, A.K. Srivastava, A. Singh, R. Chari, R.A. Khan, J.A. Chakera, P.D. Gupta, Study of high-order harmonic generation from nanoparticles. J. Phys. B At. Mol. Opt. Phys. 43, 025603 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    R.A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, H. Kuroda, High-order harmonic generation in Ag nanoparticle-contained plasma. J. Phys. B At. Mol. Opt. Phys. 41, 045603 (2008)ADSCrossRefGoogle Scholar
  42. 42.
    C. Rodríguez, Z. Sun, Z. Wang, W. Rudolph, Characterization of laser-induced air plasmas by third harmonic generation. Opt. Express 19, 16115 (2011)ADSCrossRefGoogle Scholar
  43. 43.
    M.L. Naudeau, R.J. Law, T.S. Luk, T.R. Nelson, S.M. Cameron, J.V. Rudd, Observation of nonlinear optical phenomena in air and fused silica using a 100 GW, 1.54 mum source. Opt. Express 14, 6194 (2006)ADSCrossRefGoogle Scholar
  44. 44.
    R.A. Ganeev, H. Singhal, P.A. Naik, J.A. Chakera, M. Kumar, P.D. Gupta, Fourth harmonic generation during parametric four-wave mixing in the filaments in ambient air. Phys. Rev. A 82, 043812 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The Guo China-US Photonics Laboratory, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and PhysicsChinese Academy of SciencesChangchunChina
  2. 2.The Institute of OpticsUniversity of RochesterRochesterUSA

Personalised recommendations