Advertisement

Applied Physics A

, 124:771 | Cite as

Excellent thermal stability and low dielectric loss of (Ba1 − xBi0.5xSr0.5x)(Ti1 − xBi0.5xZr0.5x)O3 solid solution ceramics in a broad temperature range applied in X8R

  • Xiaoxia Li
  • Xiuli ChenEmail author
  • Xiao Yan
  • Huanfu Zhou
  • Xiaobin Liu
  • Xu Li
  • Jie Sun
Article
  • 67 Downloads

Abstract

(Ba1 − xBi0.5xSr0.5x)(Ti1 − xBi0.5xZr0.5x)O3 [BBSTBZ, 0.02 ≤ x ≤ 0.1] ceramics were synthesized by a traditional solid-state reaction technique. The transition from tetragonal phase to pseudocubic phase at 0.06 ≤ x ≤ 0.08 was observed in Raman spectra and X-ray diffraction patterns. With adding (Bi3+, Sr2+, Zr4+), the thermal-stability of relative permittivity (Δε/ε25 °C) and dielectric loss (tan δ) of ceramics were optimized. Especially, (Ba0.9Bi0.05Sr0.05)(Ti0.9Bi0.05Zr0.05)O3 ceramics with small Δε/ε25 °C value (≤ ± 15%) in a wide temperature range of − 70 °C to 155 °C, high εr (εr ~ 2088–2116) and tan δ (tan δ ≤ 0.02) from − 10 °C to 200 °C were obtained, which indicates that BBSTBZ is suitable for X8R applications. Impedance spectroscopy was used to analyse the conduction and relaxation processes. The results showed that the relaxation and conduction process in the high-temperature region are thermally activated, and the oxygen vacancies are charge carriers.

Notes

Acknowledgements

This study was supported by Natural Science Foundation of China (Nos. 11464009 and 11664008), Natural Science Foundation of Guangxi (Nos. 2015GXNSFDA139033, 2017GXNSFFA198011 and 2017GXNSFDA198027) and Research Start-up Funds Doctor of Guilin University of Technology (No. GUTQDJJ2017133).

References

  1. 1.
    Y.M. Zhang, M.H. Cao, Z.H. Yao, Z.J. Wang, Z. Song, A. Ullah, H. Hao, H.X. Liu, Mater. Res. Bull. 67, 70–76 (2015)CrossRefGoogle Scholar
  2. 2.
    J. Wang, S.L. Jiang, D. Jiang, J.J. Tian, Y.L. Li, Y. Wang, Mater. Res. Bull. 38, 5853–5857 (2012)Google Scholar
  3. 3.
    S.F. Wang, G.O. Dayton, J. Am. Ceram. Soc. 82, 2677–2682 (2010)CrossRefGoogle Scholar
  4. 4.
    W.H. Lee, C.Y. Su, J. Am. Ceram. Soc. 90, 3345–3348 (2010)CrossRefGoogle Scholar
  5. 5.
    V. Gartnerova, O. Pacherova, M. Klinger, M. Jelinek, A. Jager, M. Tyunina, Mater. Res. Bull. 89, 180–184 (2017)CrossRefGoogle Scholar
  6. 6.
    Y.H. Hoon, Y.H. Han, Jpn. J. Appl. Phys. 44, 6143 (2014)Google Scholar
  7. 7.
    T. Ishidate, S. Abe, H. Takahashi, N. Mori, Phys. Rev. Lett. 78, 2397–2400 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    Y.J. Wu, Y.Q. Lin, S.P. Gu, X.M. Chen, Appl. Phys. A Mater. Sci. Process. 97, 191–194 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    J.B. Lim, S. Zhang, T.R. Shrout, Electron. Mater. Lett. 7, 71–75 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    T. Wang, H. Hao, M. Liu, D. Zhou, Z. Yao, M. Cao et al., J. Am. Ceram. Soc. 98, 690–693 (2015)CrossRefGoogle Scholar
  11. 11.
    N. Raengthon, H.J. Brown-Shaklee, G.L. Brennecka, D.P. Cann, J. Mater. Sci. 48, 2245–2250 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    A. Zeb, S.J. Milne, J. Eur. Ceram. Soc. 34, 3159–3166 (2014)CrossRefGoogle Scholar
  13. 13.
    S.F. Wang, J.H. Li, Y.F. Hsu, Y.C. Wu, Y.C. Lai, M.H. Chen, J. Eur. Ceram. Soc. 33, 1793–1799 (2013)CrossRefGoogle Scholar
  14. 14.
    S. Mahajan, D. Haridas, K. Sreenivas, O.P. Thakur, C. Prakash, Mater. Lett. 97, 40–43 (2013)CrossRefGoogle Scholar
  15. 15.
    X.L. Chen, J. Chen, D.D. Ma, L. Fang, H.F. Zhou, Ceram. Int. 41, 2081–2088 (2015)CrossRefGoogle Scholar
  16. 16.
    X.L. Chen, G.S. Huang, D.D. Ma, G.F. Liu, H.F. Zhoun, Ceram. Int. 43, 926–929 (2017)CrossRefGoogle Scholar
  17. 17.
    D.D. Ma, X.L. Chen, G.S. Huang, J. Chen, H.F. Zhou, F. Fang, Ceram. Int. 41, 7157–7161 (2015)CrossRefGoogle Scholar
  18. 18.
    K. Suzuki, K. Kijima, J. Mater. Sci. 40, 1289–1892 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    C.C. Huang, D.P. Cann, X. Tan, N. Vittayakorn, J. Appl. Phys. 102, 136 (2007)Google Scholar
  20. 20.
    R.D. Shannon, Acta Crystallogr. A 32, 751–767 (1976)ADSCrossRefGoogle Scholar
  21. 21.
    C.B. Long, H.Q. Fan, M.M. Li, G.Z. Dong, Q. Li, Scr. Mater. 75, 70–73 (2014)CrossRefGoogle Scholar
  22. 22.
    M. Deluca, Z.G. Al-Jlaihawi, K. Reichmann, A.M.T. Bell, A. Feteira, J. Mater. Chem. A 6, 5443–5451 (2018)CrossRefGoogle Scholar
  23. 23.
    U.D. Venkateswaran, V.M. Naik, R. Naik, Phys. Rev. B 58, 14256–14260 (1998)ADSCrossRefGoogle Scholar
  24. 24.
    C.H. Perry, D.B. Hall, Phys. Rev. Lett. 15, 700–702 (1965)ADSCrossRefGoogle Scholar
  25. 25.
    M.H. Frey, and D.A. Phys. Rev. B 54, 3158 (1996)ADSCrossRefGoogle Scholar
  26. 26.
    J. Kreisel, P. Bouvier, M. Maglione, B. Dkhil, A. Simon, Phys. Rev. B 69, 092104 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    J. Plocharski, W. Wieczoreck, Solid. State. Ionics. 28, 979–982 (1988)CrossRefGoogle Scholar
  28. 28.
    A.K. Jonscher, The universal dielectric response. Nature. 6, 19–24 (1977)Google Scholar
  29. 29.
    R. Gerhardt, J. Phys. Chem. Solids 55, 1491–1506 (1994)ADSCrossRefGoogle Scholar
  30. 30.
    X. Yao, Z.L. Chen, L.E. Cross, J. Appl. Phys. 54, 3399–3403 (1984)Google Scholar
  31. 31.
    A.K. Jonscher, J. Phys. D Appl. Phys. 32, R57–R70 (1999)ADSCrossRefGoogle Scholar
  32. 32.
    L. Liu, Y. Huang, Y. Li, M. Wu, L. Fang, C. Hu, Y. Wang, Phys. B 407, 136–139 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    S. Steinsvik, R. Bugge, J. Gjonnes, J. Tafto, T. Norby, J. Phys. Chem. Solids 58, 969–976 (1997)ADSCrossRefGoogle Scholar
  34. 34.
    S. Sen, R. Choudhary, P. Pramanik, Phys. B 387, 56–62 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    F.A. Kröger, H.J. Vink, J. Phys. Chem. Solids 5, 208–223 (1958)ADSCrossRefGoogle Scholar
  36. 36.
    C. Ang, Z. Yu, L.E. Cross, Phys. Rev. B. 62, 228–236 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiaoxia Li
    • 1
  • Xiuli Chen
    • 1
  • Xiao Yan
    • 1
  • Huanfu Zhou
    • 1
  • Xiaobin Liu
    • 1
  • Xu Li
    • 1
  • Jie Sun
    • 1
  1. 1.Collaborative Innovation Center for Exploration of Hidden Nonferrous Metal Deposits and Development of New Materials in Guangxi, Key Laboratory of Nonferrous Materials and New Processing Technology, Ministry of Education, School of Materials Science and EngineeringGuilin University of TechnologyGuilinChina

Personalised recommendations