Advertisement

Applied Physics A

, 124:762 | Cite as

Effect of acoustic phonon scattering on impact ionization rate of electrons in monolayer graphene nanoribbons

  • Girish Chandra Ghivela
  • Joydeep Sengupta
Article
  • 262 Downloads

Abstract

In this paper, we have studied the behavior of impact ionization rate of electrons in monolayer graphene nanoribbons due to various scattering mechanisms. The effects have been analyzed using the comprehensive analytical expressions, which result from all the possible inelastic interactions before the ionizing collision inside the graphene nanoribbons structures. These interactions include scattering of electrons due to acoustic phonon, inter-carrier scattering and optical phonon. Also, the obtained results are compared with previously reported data. The overestimation in earlier data has been analyzed in detail through the developed analytical expression. In addition to this, the percentage change in electron ionization rate has been calculated by considering it with and without acoustic phonon scattering.

References

  1. 1.
    K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    D.C. Elias, R.R. Nair, T.M.G. Mohiuddin, S.V. Morozov, P. Blake, M.P. Halsall, A.C. Ferrari, D.W. Boukhvalov, M.I. Katsnelson, A.K. Geim, K.S. Novoselov, Science 323, 610 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Nat. Mater. 6, 652 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    S. Ahmad, IETE Tech. Rev. 16, 297 (1999)CrossRefGoogle Scholar
  6. 6.
    K.C. Narasimhamurthy, R. Paily, IETE Tech. Rev. 28, 57 (2011)CrossRefGoogle Scholar
  7. 7.
    A.B. Bhowmick, A. Banerjee, A.R. Pandey, A. Yadav, P. Pallye, A. Acharyya, IETE J. Res. 642, 645 (2016)CrossRefGoogle Scholar
  8. 8.
    M.H. Ghadiry, M. Nadi, M. Ahmadi, A.B.S. Manaf, Microelect. Reliab. 51, 2143 (2011)CrossRefGoogle Scholar
  9. 9.
    T. Fang, A. Konar, H. Xing, D. Jena, Appl. Phys. Lett. 91, 092109 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    Y. Wang, B.C. Huang, M. Zhang, J.C. Woo, Microelect. Reliab. 52, 1602 (2012)CrossRefGoogle Scholar
  11. 11.
    R. Sako, H. Hosokawa, H. Tsuchiya, IEEE Electron Dev. Lett. 32, 6 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    F. Schwierz, Nat. Nanotechnol. 89, 487 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    M. Dragoman, D. Neculoiu, D. Dragoman, G. Deligeorgis, G. Konstantinidis, A. Cismaru, A.F. Coccetti, R. Plana, IEEE Microw. Mag. 11, 81 (2010)CrossRefGoogle Scholar
  14. 14.
    M.H. Ghadiry, M. Nadi, M. Rahamani, M.T. Ahmadi, A.B.A. Manaf, Semiconductors 46, 126 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    W. Maes, K. De Meyer, R. Van Overstraeten, Solid State Electron. 33, 706 (1990)ADSCrossRefGoogle Scholar
  16. 16.
    W. Shockley, Solid State Electron. 2, 35 (1961)ADSCrossRefGoogle Scholar
  17. 17.
    K. Ridley, J. Phys. C 16, 3375 (1983)ADSGoogle Scholar
  18. 18.
    L. Pirro, A. Girdhar, Y. Leblebici, J.P. Leburton, J. Appl. Phys. 112, 093707 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    M.H. Ghadiry, A.B.A. Manaf, M. Nadi, M. Rahamani, M.T. Ahmadi, Microelect. Reliab. 52, 1396 (2012)CrossRefGoogle Scholar
  20. 20.
    O. Rubel, J. Phys. Condens. Matter 23, 055802 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    M. Lundstrom, T. Low, D. Berdebes, Low bias transport in graphene: an introductory, Lecture Notes, pp. 1–23 (2009)Google Scholar
  22. 22.
    R.S. Shishir, D.K. Ferry, Condens. Matter. 21, 344201 (2009)CrossRefGoogle Scholar
  23. 23.
    M.H. Ghadiry, R. Ismail, M. Saeidmanesh, M. Khaledian, A.A. Manaf, Nano Res. Lett. 9, 604 (2014)CrossRefGoogle Scholar
  24. 24.
    M.H. Ghadiry, M. Nadi, M. Saiedmanesh, H. Abadi, F. Karimi, J. Comput. Theor. Nanosci. 11, 339 (2014)CrossRefGoogle Scholar
  25. 25.
    M. Saeidmanesh, M.H. Ghadiry, M. Khaledian, M.J. Kiani, R. Ismail, J. Comput. Electron. 13, 180 (2014)CrossRefGoogle Scholar
  26. 26.
    A. Acharyya, J.P. Banerjee, J. Comput. Electron. 13, 917 (2014)CrossRefGoogle Scholar
  27. 27.
    S. Midday, D.P. Bhattacharya, Phys. Scr. 83, 025702 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    A. Betti, G. Fiori, G. Lannaccone, Appl. Phys. Lett. 98, 212111 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    W.K. Tse, E.H. Hwang, S.D. Sarma, Appl. Phys. Lett. 93, 023128 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    H. Ge, G. Wang, Y. Liao, Chem. Phys. 457, 114 (2015)CrossRefGoogle Scholar
  31. 31.
    A. Acharyya, S. Chatterjee, A. Das, A. Banerjee, A.R. Pandey, A. Yadav, J.P. Banerjee, J. Comput. Electron. 15, 34–39 (2016)CrossRefGoogle Scholar
  32. 32.
    Acharyya, Appl. Phys. A (2017) 123: 629.  https://doi.org/10.1007/s00339-017-1245-2 ADSCrossRefGoogle Scholar
  33. 33.
    V.E. Dorgan, M.H. Bae, E. Pop, Appl. Phys. Lett. 97, 082112 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    T. Jena, Q. Fang, H. Zhang, Xing, Appl. Phys. Lett. 93, 112106 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.EMI-EMC Lab, Department of Electronics and Communication EngineeringVisvesvaraya National Institute of TechnologyNagpurIndia

Personalised recommendations