Applied Physics A

, 125:114 | Cite as

Studies on the different assembles of magnetic shielding pieces in electromagnetic induction-type wireless charging system

  • Zhongchong Lin
  • Lili WangEmail author
  • Zhigao Huang


In this paper, the different assembles of magnetic shielding piece made from ferrite were studied on a simple test platform. The distribution of the voltage could be significantly focused by the piece in transmitter and the coupling coefficient k was also improved. The piece in the receiver could help improve the voltage conversion efficiency η. The symmetrical mode (aa) (with basic pieces in both sides) were thought to be the optimal basic mode. It was found that the magnetic flux density in mode (aa) was significantly higher than that in mode (oo) (without basic piece). The deflection angle θ of the central magnetic field in mode (aa) was significantly reduced compared with that in mode (oo). Different additional pieces were attached on the base pieces, and four assemblies were designed to investigate the shape effect on the system. The effect of the peripheral addition was weaker than the central addition either in the transmitter or the receiver. The high value of the k and η for asymmetrical mode (db) (with central and peripheral additions in transmitter, and with central addition in receiver) suppressed many reported papers of wireless charging.



This work was supported by the National Natural Science Foundation of China (No. 61574037), Natural Science Foundation of Fujian Province (No. 2016J05117), Fujian Normal University of College Students Innovative Training Program Project (No. ccxl-2017114).


  1. 1.
    X. Lu, P. Wang, D. Niyato, I.K. Dong, Z. Han, IEEE Commun. Surveys Tuts. 18, 1413 (2016)CrossRefGoogle Scholar
  2. 2.
    Y. Zeng, B. Clerckx, R. Zhang, IEEE Trans. Commun. 65, 2264 (2017)CrossRefGoogle Scholar
  3. 3.
    C. Liu, A.P. Hu, M. Budhia, A generalized coupling model for capacitive power transfer systems, in 2010-36th Annual Conference on IEEE Industrial Electronics Society (Glendale, 2010), pp. 274–279Google Scholar
  4. 4.
    A.P. Hu, C. Liu, H.L. Li, A novel contactless battery charging system for soccer playing robot, in 2008-15th International Conference on Mechatronics and Machine Vision in Practice (Auckland, 2008), pp. 646–650Google Scholar
  5. 5.
    F. Lu, H. Zhang, C. Mi, E. Sciubba, Energies 10, 1752 (2017)CrossRefGoogle Scholar
  6. 6.
    T. Chang, Y. Tanabe, C.C. Wojcik, A.C. Barksdale, S. Doshay, Z. Dong, H. Liu, M. Zhang, Y. Chen, Y. Su, T.H. Lee, J.S. Ho, J.A. Fan, Adv. Funct. Mater. 27, 1703059 (2017)CrossRefGoogle Scholar
  7. 7.
    N. Shimokura, N. Kaya, M. Shinohara, H. Matsumoto, Electr. Eng. Jpn. 120, 33 (2015)CrossRefGoogle Scholar
  8. 8.
    C. Reinhold, P. Scholz, W. John, U. Hilleringmann, J. Commun. 2, 14 (2007)CrossRefGoogle Scholar
  9. 9.
    L. Peng, J.Y. Wang, L.X. Ran, O. Breinbjerg, N.A. Mortensen, J. Electromagn. Waves Appl. 25, 845 (2011)CrossRefGoogle Scholar
  10. 10.
    B. Wang, K.H. Teo, T. Nishino, W. Yerazunis, J. Barnwell, J. Zhang, Appl. Phys. Lett. 98, 254101 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    A. Kurs, A. Karalis, R. Moffatt, J.D. Joannopoulos, P. Fisher, M. Soljačić, Science 317, 83 (2007)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    X. Yu, S. Sandhu, S. Beiker, R. Sassoon, S. Fan, Appl. Phys. Lett. 99, 214102 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    A.L.A.K. Ranaweera, T.P. Duong, J.-W. Lee, J. Appl. Phys. 116, 043914 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    L. Tan, J. Guo, X. Huang, H. Liu, W. Wang, C. Yan, M. Zhang, IEEE Trans. Power Electron. 33, 3613 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    M.F. Imani, A. Grbic, J. Appl. Phys. 117, 184903 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    1A. Christ, M. Douglas, J. Nadakuduti, N. Kuster, Proc. IEEE 101, 1482 (2013)CrossRefGoogle Scholar
  17. 17.
    J. Miyakoshi, Proc. IEEE 101, 1494 (2013)CrossRefGoogle Scholar
  18. 18.
    N.D. Madzharov, V.S. Nemkov, J. Electr. Engin. 68, 235 (2017)ADSGoogle Scholar
  19. 19.
    K.Y. Kim, Wireless Power Transfer—Principles and Engineering Explorations (InTech, Croatia, 2012), pp. 51–64CrossRefGoogle Scholar
  20. 20.
    J.T. Boys, G.A. Covic, A.W. Green, Proc. Inst. Elect. Eng. Elect. Power Appl. 147, 37 (2000)CrossRefGoogle Scholar
  21. 21.
    E. Waffenschmidt, Wireless power for mobile devices, in 2011-33rd International Telecommunications Energy Conference (Amsterdam, 2011), pp. 1–9Google Scholar
  22. 22.
    Y.C. Hsieh, Z.R. Lin, M.C. Chen, H.C. Hsieh, Y.C. Liu, H.J. Chiu, IEEE Trans. Circuits Syst. II, Exp. Briefs 64, 942 (2016)CrossRefGoogle Scholar
  23. 23.
    Y. Jang, M.M. Jovanović, IEEE Trans. Ind. Electron. 50, 520 (2003)CrossRefGoogle Scholar
  24. 24.
    Y. Matsuda, H. Sakamoto, H. Shibuya, S. Murata, J. Appl. Phys. 99, 08R902 (2006)CrossRefGoogle Scholar
  25. 25.
    H. Feng, T. Cai, S. Duan, X. Zhang, H. Hu, J. Niu, IEEE Trans. Ind. Electron. 65, 2177 (2018)CrossRefGoogle Scholar
  26. 26.
    Y. Wang, Y. Yao, X. Liu, D.G. Xu, L. Cai, IEEE Trans. Power Electron. 33, 2007 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    R. Bosshard, J. Muhlethaler, J.W. Kolar, I. Stevanovic, Optimized magnetic design for inductive power transfer coils, in 2013-28th Annual Applied Power Electronics Conference and Exposition (Long Beach, 2013), pp. 1812–1819Google Scholar
  28. 28.
    B.L. Cannon, J.F. Hoburg, D.D. Stancil, S.C. Goldstein, IEEE Trans. Power Electron. 24, 1819 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    N.L. Zhen, R.A. Chinga, R. Tseng, J. Lin, IEEE Trans. Ind. Electron. 56, 1801 (2009)CrossRefGoogle Scholar
  30. 30.
    D. Barth, B. Klaus, T. Leibfried, “Litz wire design for wireless power transfer in electric vehicles”, in 2017 IEEE Wireless Power Transfer Conference (Taipei, 2017), pp. 1–4Google Scholar
  31. 31.
    W. Chen, C. Liu, C. Lee, Z. Shan, Energies 9, 906 (2016)CrossRefGoogle Scholar
  32. 32.
    Y. Urzhumov, D.R. Smith, Phys. Rev. B 83, 205114 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    Y. Cho, S. Lee, D.H. Kim, H. Kim, C. Song, S. Kong, J. Park, C. Seo, J. Kim, IEEE Trans. Electromagn. Compat. 60, 1001 (2017)CrossRefGoogle Scholar
  34. 34.
    D. Huang, Y. Urzhumov, D.R. Smith, K. Hoo, Teo, J. Zhang, J. Appl. Phys. 111, 064902 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    Z. Dai, J. Wang, M. Long, H. Huang, M. Sun, Aip Adv. 7, 095013 (2017)ADSCrossRefGoogle Scholar
  36. 36.
    C.A. Stergiou, V. Zaspalis, Ceram. Int. 41, 4798 (2015)CrossRefGoogle Scholar
  37. 37.
    H. Miura, S. Arai, F. Sato, H. Matsuki, T. Sato, J. Appl. Phys. 97, 10Q702 (2005)CrossRefGoogle Scholar
  38. 38.
    J.H. Park, S.W. Kim, J. Magnet. 18, 105 (2013)CrossRefGoogle Scholar
  39. 39.
    T. Batra, E. Schaltz, S. Ahn, J. Appl. Phys. 117, 17D517 (2015)CrossRefGoogle Scholar
  40. 40.
    H. Kim, C. Song, D. Niyato, D.H. Kim, Z. Han, D.H. Jung, I.M. Kim, Y.I. Kim, J. Kim, S. Ahn, J. Kim, IEEE Trans. Microw. Theoy Tech. 64, 383 (2016)Google Scholar
  41. 41.
    Z. Wang, S. Cui, S. Han, K. Song, C. Zhu, M.I. Matveevich, O.S. Yurievich, IEEE Trans. Veh. Technol. 67, 124 (2018)CrossRefGoogle Scholar
  42. 42.
    C.P. Dick, E. Waffenschmidt, A. Krause, C. Polak, Qualification of soft-magnetic shielding materials used in inductive wireless power transmission systems, in 2015 IEEE Applied Power Electronics Conference and Exposition (Charlotte, 2015), pp. 2522–2526Google Scholar
  43. 43.
    S. Jeong, D.H. Kim, J. Song, H. Kim, S. Lee, C. Song, J. Lee, J. Song, J. Kim, IEEE Ind. Electron.
  44. 44.
    J. Wang, M. Hu, C. Cai, Z. Lin, L. Li, Z. Fang, Aip Advances 8, 055004 (2018)ADSCrossRefGoogle Scholar
  45. 45.
    A.P. Sample, D.A. Meyer, J.R. Smith, IEEE Trans. Ind. Electron. 58(2), 544 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and EnergyFujian Normal UniversityFuzhouChina
  2. 2.Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy StorageFuzhouChina
  3. 3.Fujian Provincial Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient DevicesXiamenChina

Personalised recommendations