Advertisement

Applied Physics A

, 124:779 | Cite as

Charge transfer induced tunable bandgap and enhanced saturable absorption behavior in rGO/WO3 composites

  • Venkadeshkumar Ramar
  • Karthikeyan BalasubramanianEmail author
Article
  • 106 Downloads

Abstract

In this present work, we synthesized reduced graphene oxide/Tungsten trioxide (rGO/WO3) nanocomposites through hydrothermal method. We discussed the implication of charge transfer between Tungsten trioxide (WO3) and reduced graphene oxide (rGO) through steady-state fluorescence quenching with fitting. In addition, we report nonlinear optical (NLO) properties of GO, WO3 and rGO/WO3 at 532 nm employing the open aperture Z Scan technique. UV spectroscopy reveals the bandgap variation due to rGO addition. The rGO/WO3 nanohybrids shows the low saturation intensity Is and 0.5 × 1011 W/m2 compared to the WO3 saturation intensity Is ~ 1 × 1013 W/m2. The results displays that the effective charge transfer between WO3 and rGO leads to the band-gap variation and enhances the SA performance of the nanohybrids. Results shows that these nanohybrids are potentially useful for mode locking, optical switching and as a saturable absorber. Moreover, the structural property was confirmed by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) images supports the nanohybrids as nanorods and vibrational properties were analyzed by Fourier transformed Infrared Spectroscopy (FTIR) technique.

References

  1. 1.
    T. Pittman, Y. Shih, D. Strekalov, A. Sergienko, Optical imaging by means of two-photon quantum entanglement. Phys. Rev. A 52, R3429 (1995)ADSCrossRefGoogle Scholar
  2. 2.
    T. Mueller, F. Xia, P. Avouris, Graphene photodetectors for high-speed optical communications. Nat. Photonics 4, 297–301 (2010)CrossRefGoogle Scholar
  3. 3.
    K.R. Casey, W.R. Fairfax, S.J. Smith, J.A. Dixon, Intratracheal fire ignited by the Nd-YAG laser during treatment of tracheal stenosis. Chest 84, 295–296 (1983CrossRefGoogle Scholar
  4. 4.
    B. Zhang, G. Li, M. Chen, Z. Zhang, Y. Wang, Passive mode locking of a diode-end-pumped Nd:GdVO4 laser with a semiconductor saturable absorber mirror. Opt. Lett. 28, 1829–1831 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Xu, Z. Liu, X. Zhang, Y. Wang, J. Tian, Y. Huang et al., A graphene hybrid material covalently functionalized with porphyrin: synthesis and optical limiting property. Adv. Mater. 21, 1275–1279 (2009)CrossRefGoogle Scholar
  6. 6.
    S. Kawata, Y. Kawata, Three-dimensional optical data storage using photochromic materials. Chem. Rev. 100, 1777–1788 (2000)CrossRefGoogle Scholar
  7. 7.
    Y.C. Chen, N.R. Raravikar, L.S. Schadler, P.M. Ajayan, Y.P. Zhao, T.M. Lu et al., Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 µm. Appl. Phys. Lett. 81, 975–977 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    M. Kavitha, H. John, P. Gopinath, R. Philip, Synthesis of reduced graphene oxide–ZnO hybrid with enhanced optical limiting properties. J. Mater. Chem. C 1, 3669–3676 (2013)CrossRefGoogle Scholar
  9. 9.
    W. Song, C. He, W. Zhang, Y. Gao, Y. Yang, Y. Wu et al., Synthesis and nonlinear optical properties of reduced graphene oxide hybrid material covalently functionalized with zinc phthalocyanine. Carbon 77, 1020–1030 (2014)CrossRefGoogle Scholar
  10. 10.
    Z. Liu, Y. Wang, X. Zhang, Y. Xu, Y. Chen, J. Tian, Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes. Appl. Phys. Lett. 94, 021902 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    S. Perumbilavil, A. López-Ortega, G.K. Tiwari, J. Nogués, T. Endo, R. Philip, Enhanced ultrafast nonlinear optical response in ferrite core/shell nanostructures with excellent optical limiting performance. Small 14, 1701001 (2018)CrossRefGoogle Scholar
  12. 12.
    S. Perumbilavil, K. Sridharan, D. Koushik, P. Sankar, V.M. Pillai, R. Philip, Ultrafast and short pulse optical nonlinearity in isolated, sparingly sulfonated water soluble graphene. Carbon 111, 283–290 (2017)CrossRefGoogle Scholar
  13. 13.
    P. Uppachai, V. Harnchana, S. Pimanpang, V. Amornkitbamrung, A.P. Brown, R.M. Brydson, A substoichiometric tungsten oxide catalyst provides a sustainable and efficient counter electrode for dye-sensitized solar cells. Electrochim. Acta 145, 27–33 (2014)CrossRefGoogle Scholar
  14. 14.
    S.M. Kanan, Z. Lu, J.K. Cox, G. Bernhardt, C.P. Tripp, Identification of surface sites on monoclinic WO3 powders by infrared spectroscopy. Langmuir 18, 1707–1712, (2002)CrossRefGoogle Scholar
  15. 15.
    R. Diehl, G. Brandt, E. Salje, The crystal structure of triclinic WO3. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 34, 1105–1111 (1978)CrossRefGoogle Scholar
  16. 16.
    S. Balaji, Y. Djaoued, A.-S. Albert, R. Brüning, N. Beaudoin, J. Robichaud, Porous orthorhombic tungsten oxide thin films: synthesis, characterization, and application in electrochromic and photochromic devices. J. Mater. Chem. 21, 3940–3948 (2011)CrossRefGoogle Scholar
  17. 17.
    K. Locherer, I. Swainson, E. Salje, Transition to a new tetragonal phase of WO3: crystal structure and distortion parameters. J. Phys. Condens. Matter. 11, 4143 (1999)ADSCrossRefGoogle Scholar
  18. 18.
    K. Huang, Q. Pan, F. Yang, S. Ni, X. Wei, D. He, Controllable synthesis of hexagonal WO3 nanostructures and their application in lithium batteries. J. Phys. D Appl. Phys. 41, 155417 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    N.M. Vuong, D. Kim, H. Kim, Porous Au-embedded WO3 nanowire structure for efficient detection of CH4 and H2S. Sci Rep 5, 11040 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    J. Wang, E. Khoo, P.S. Lee, J. Ma, Synthesis, assembly, and electrochromic properties of uniform crystalline WO3 nanorods. J. Phys. Chem. C 112, 14306–14312 (2008)CrossRefGoogle Scholar
  21. 21.
    Y. Shigesato, Photochromic properties of amorphous WO3 films. Jpn. J. Appl. Phys. 30, 1457 (1991)ADSCrossRefGoogle Scholar
  22. 22.
    L. Ying-Tao, L. Shi-Bing, L. Hang-Bing, L. Qi, W. Qin, W. Yan et al., Investigation of resistive switching behaviours in WO3-based RRAM devices. Chin. Phys. B 20, 017305 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    H. Swaminathan, V. Ramar, B. Karthikeyan, Excited state electron, energy transfer dynamics between 2D MoS2 and GO, RGO for turn ON BSA, HSA sensing. J. Phys. Chem. C 121, 12585–12592 (2017)CrossRefGoogle Scholar
  24. 24.
    M.E. Khan, M.M. Khan, M.H. Cho, CdS-graphene nanocomposite for efficient visible-light-driven photocatalytic and photoelectrochemical applications. J. Colloid Interfaces Sci. 482, 221–232 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    M.E. Khan, M.M. Khan, M.H. Cho, Defected graphene nano-platelets for enhanced hydrophilic nature and visible light-induced photoelectrochemical performances. J. Phys. Chem. Solids 104, 233–242 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    M. Rakibuddin, H. Kim, M.E. Khan, Graphite-like carbon nitride (C 3 N 4) modified N-doped LaTiO 3 nanocomposite for higher visible light photocatalytic and photo-electrochemical performance. Appl. Surf. Sci. 452, 400–412 (2018)ADSCrossRefGoogle Scholar
  27. 27.
    S. Thangavel, M. Elayaperumal, G. Venugopal, Synthesis and properties of tungsten oxide and reduced graphene oxide nanocomposites. Mater. Express 2, 327–334 (2012)CrossRefGoogle Scholar
  28. 28.
    S. Perumbilavil, P. Sankar, T.Priya Rose, R. Philip, White light Z-scan measurements of ultrafast optical nonlinearity in reduced graphene oxide nanosheets in the 400–700 nm region. Appl. Phys. Lett. 107, 051104 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    R. Vemuri, M.H. Engelhard, C. Ramana, Correlation between surface chemistry, density, and band gap in nanocrystalline WO3 thin films. ACS Appl. Mater. Interfaces 4, 1371–1377 (2012)CrossRefGoogle Scholar
  30. 30.
    F. Wang, C. Di Valentin, G. Pacchioni, Semiconductor-to-metal transition in WO3–x: nature of the oxygen vacancy. Phys. Rev. B 84, 073103 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    Y. Shen, P. Yan, Y. Yang, F. Hu, Y. Xiao, L. Pan et al., Hydrothermal synthesis and studies on photochromic properties of Al doped WO3 powder. J. Alloy. Compd. 629, 27–31 (2015)CrossRefGoogle Scholar
  32. 32.
    S. Saha, M. Jana, P. Khanra, P. Samanta, H. Koo, N.C. Murmu et al., Band gap engineering of boron nitride by graphene and its application as positive electrode material in asymmetric supercapacitor device. ACS Appl. Mater. Interfaces. 7, 14211–14222 (2015)CrossRefGoogle Scholar
  33. 33.
    M. Jalil, S.S. Chowdhury, M. Alam Sakib, S. Enamul Hoque Yousuf, E. Khan Ashik, S.H. Firoz et al., Temperature-dependent phase transition and comparative investigation on enhanced magnetic and optical properties between sillenite and perovskite bismuth ferrite-rGO nanocomposites. J. Appl. Phys. 122, 084902 (2017)ADSCrossRefGoogle Scholar
  34. 34.
    F. Zheng, M. Guo, M. Zhang, Hydrothermal preparation and optical properties of orientation-controlled WO3 nanorod arrays on ITO substrates. CrystEngComm 15, 277–284 (2013)CrossRefGoogle Scholar
  35. 35.
    M.E. Khan, M.M. Khan, M.H. Cho, Ce 3+-ion, surface oxygen vacancy, and visible light-induced photocatalytic dye degradation and photocapacitive performance of CeO 2-graphene nanostructures. Sci. Rep. 7, 5928 (2017)ADSCrossRefGoogle Scholar
  36. 36.
    M.E. Khan, M.M. Khan, B.-K. Min, M.H. Cho, Microbial fuel cell assisted band gap narrowed TiO2 for visible light-induced photocatalytic activities and power generation. Sci. Rep. 8, 1723 (2018)ADSCrossRefGoogle Scholar
  37. 37.
    M.M. Khan, S.F. Adil, A. Al-Mayouf, Metal Oxides as Photocatalysts (Elsevier, Amsterdam, 2015)CrossRefGoogle Scholar
  38. 38.
    M.M. Khan, S.A. Ansari, M.E. Khan, M.O. Ansari, B.-K. Min, M.H. Cho, Visible light-induced enhanced photoelectrochemical and photocatalytic studies of gold decorated SnO2 nanostructures. New J. Chem. 39, 2758–2766 (2015)CrossRefGoogle Scholar
  39. 39.
    M.M. Khan, S.A. Ansari, D. Pradhan, M.O. Ansari, J. Lee, M.H. Cho, Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. J. Mater. Chem. A 2, 637–644 (2014)CrossRefGoogle Scholar
  40. 40.
    M. Gerosa, C. Di Valentin, G. Onida, C.E. Bottani, G. Pacchioni, Anisotropic effects of oxygen vacancies on electrochromic properties and conductivity of γ-monoclinic WO3. J. Phys. Chem. C 120, 11716–11726 (2016)CrossRefGoogle Scholar
  41. 41.
    H. Liu, F. Zeng, Y. Lin, G. Wang, F. Pan, Correlation of oxygen vacancy variations to band gap changes in epitaxial ZnO thin films. Appl. Phys. Lett. 102, 181908 (2013)ADSCrossRefGoogle Scholar
  42. 42.
    J. Liu, J. Ke, D. Li, H. Sun, P. Liang, X. Duan et al., Oxygen vacancies in shape controlled Cu2O/reduced graphene oxide/In2O3 hybrid for promoted photocatalytic water oxidation and degradation of environmental pollutants. ACS Appl. Mater. Interfaces 9, 11678–11688 (2017)CrossRefGoogle Scholar
  43. 43.
    E.-S. Jang, J.Y. Bae, J. Yoo, W.I. Park, D.-W. Kim, G.-C. Yi et al., Quantum confinement effect in ZnO/Mg0.2Zn0.8O multishell nanorod heterostructures. Appl. Phys. Lett. 88, 023102 (2006)ADSCrossRefGoogle Scholar
  44. 44.
    M.E. Khan, M.M. Khan, M.H. Cho, Green synthesis, photocatalytic and photoelectrochemical performance of an Au–Graphene nanocomposite. RSC Adv. 5, 26897–26904 (2015)CrossRefGoogle Scholar
  45. 45.
    M.E. Khan, M.M. Khan, M.H. Cho, Biogenic synthesis of a Ag–graphene nanocomposite with efficient photocatalytic degradation, electrical conductivity and photoelectrochemical performance. New J. Chem. 39, 8121–8129 (2015)CrossRefGoogle Scholar
  46. 46.
    M.E. Khan, M.M. Khan, M.H. Cho, “Recent progress of metal-graphene nanostructures in photocatalysis. Nanoscale 10, 9427–9440 (2018)CrossRefGoogle Scholar
  47. 47.
    M.E. Khan, M.M. Khan, M.H. Cho, Fabrication of WO3 nanorods on graphene nanosheets for improved visible light-induced photocapacitive and photocatalytic performance. RSC Adv. 6, 20824–20833 (2016)CrossRefGoogle Scholar
  48. 48.
    M.E. Khan, M.M. Khan, M.H. Cho, Environmentally sustainable biogenic fabrication of AuNP decorated-graphitic gC3 N4 nanostructures towards improved photoelectrochemical performances. RSC Adv. 8, 13898–13909 (2018)CrossRefGoogle Scholar
  49. 49.
    M.E. Khan, T.H. Han, M.M. Khan, M.R. Karim, M.H. Cho, Environmentally sustainable fabrication of Ag@g-C3N4 nanostructures and their multifunctional efficacy as antibacterial agents and photocatalysts. ACS Appl. Nano Mater. 1(6), 2912–2922 (2018)CrossRefGoogle Scholar
  50. 50.
    T. Lv, L. Pan, X. Liu, Z. Sun, Enhanced photocatalytic degradation of methylene blue by ZnO–reduced graphene oxide–carbon nanotube composites synthesized via microwave-assisted reaction. Catal. Sci. Technol. 2, 2297–2301 (2012)CrossRefGoogle Scholar
  51. 51.
    Y.T. Liang, B.K. Vijayan, O. Lyandres, K.A. Gray, M.C. Hersam, Effect of dimensionality on the photocatalytic behavior of carbon–titania nanosheet composites: charge transfer at nanomaterial interfaces. J. Phys. Chem. Lett. 3, 1760–1765 (2012)CrossRefGoogle Scholar
  52. 52.
    K. Zhou, Y. Zhu, X. Yang, X. Jiang, C. Li, Preparation of graphene–TiO2 composites with enhanced photocatalytic activity. New J. Chem. 35, 353–359 (2011)CrossRefGoogle Scholar
  53. 53.
    J.Y. Luo, F.L. Zhao, L. Gong, H.J. Chen, J. Zhou, Z.L. Li et al., Ultraviolet-visible emission from three-dimensional WO3-x nanowire networks. Appl. Phys. Lett. 91, 093124 (2007)ADSCrossRefGoogle Scholar
  54. 54.
    T. Gao, B.P. Jelle, Visible-light-driven photochromism of hexagonal sodium tungsten bronze nanorods. J. Phys. Chem. C 117, 13753–13761 (2013)CrossRefGoogle Scholar
  55. 55.
    M. He, C. Quan, C. He, Y. Huang, L. Zhu, Z. Yao et al., Enhanced nonlinear saturable absorption of MoS2/graphene nanocomposite films. J. Phys. Chem. C 121, 27147–27153 (2017)CrossRefGoogle Scholar
  56. 56.
    J. Wang, Y. Chen, W.J. Blau, Carbon nanotubes and nanotube composites for nonlinear optical devices. J. Mater. Chem. 19, 7425–7443 (2009)CrossRefGoogle Scholar
  57. 57.
    A.N. Gowda, M. Kumar, A.R. Thomas, R. Philip, S. Kumar, Self-assembly of silver and gold nanoparticles in a metal-free phthalocyanine liquid crystalline matrix: structural, thermal, electrical and nonlinear optical characterization. ChemistrySelect 1, 1361–1370 (2016)CrossRefGoogle Scholar
  58. 58.
    R.L. Sutherland, Handbook of Nonlinear Optics, (CRC press, Boca Raton, 2003)CrossRefGoogle Scholar
  59. 59.
    R. Udayabhaskar, M.S. Ollakkan, B. Karthikeyan, Preparation, optical and non-linear optical power limiting properties of Cu, CuNi nanowires. Appl. Phys. Lett. 104, 013107 (2014)ADSCrossRefGoogle Scholar
  60. 60.
    B. Anand, R. Podila, P. Ayala, L. Oliveira, R. Philip, S.S.S. Sai et al., Nonlinear optical properties of boron doped single-walled carbon nanotubes. Nanoscale 5, 7271–7276 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Venkadeshkumar Ramar
    • 1
  • Karthikeyan Balasubramanian
    • 1
    Email author
  1. 1.Nanophotonics Laboratory, Department of PhysicsNational Institute of TechnologyTiruchirappalliIndia

Personalised recommendations