Advertisement

Applied Physics A

, 124:764 | Cite as

Crystal growth, physical properties, and theoretical investigation on organic acentric single crystal towards efficient second-order NLO applications: Triphenylguanidine

  • M. S. Kajamuhideen
  • K. SethuramanEmail author
  • K. Ramamurthi
Article
  • 72 Downloads

Abstract

A novel organic nonlinear optical crystal Triphenylguanidine (TPG) was grown by the solvent evaporation method. Single-crystal X-ray diffraction (XRD) studies showed that the TPG compound crystallizes in orthorhombic crystal system with Pna21 space group and the corresponding lattice planes of reflections were indexed using powder XRD studies. Fourier transform infrared and Fourier transform Raman studies revealed the presence of various functional groups in the TPG crystal. The molecular structure of TPG was also confirmed using the NMR studies. UV–Vis studies validate the aptness of TPG crystal towards nonlinear optical applications. TPG crystal shows blue emission from photoluminescence studies. The mechanical stability of the grown crystal was identified using Vickers microhardness studies. Dielectric studies were carried out as a function of frequency at room temperature. Powder SHG effective nonlinearity of TPG crystal is about 2.3 times that of standard KDP. The thermal stability of TPG crystal was investigated by the TG-DTA studies. Using Gaussian 03 program the HOMO–LUMO energy gap and first-order hyperpolarizability value for TPG molecule were calculated. The calculated first-order hyperpolarizability value of TPG molecule is 17 times that of urea.

References

  1. 1.
    H.S. Nagaraja, V. Upadhyaya, P.M. Rao, P.S. Aithal, A.P. Bhatt, J. Cryst. Growth 193, 674–678 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    M.R.S. Kumar, H.J. Ravindra, A. Jayarama, S.M. Dharmaprakash, J. Cryst. Growth 286, 451–456 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    P. Srinivasan, M. Gunasekaran, T. Kanagasekaran, R. Gopalakrishnan, P. Ramasamy, J. Cryst. Growth 289, 639–646 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    N. Vijayan, G. Bhagavannarayana, R.R. Babu, R. Gopalakrishnan, K.K. Maurya, P. Ramasamy, Cryst. Growth Des. 6, 1542–1546 (2006)CrossRefGoogle Scholar
  5. 5.
    S. Suresh, A. Ramanand, D. Jayaraman, P. Mani, Rev. Adv. Mater. Sci 30, 175–183 (2012)Google Scholar
  6. 6.
    D. Xu, M. Xiang, Z. Tan, Acta Chim. Sin 41, 570–573 (1983)Google Scholar
  7. 7.
    K. Thukral, N. Vijayan, M. Vij, C.M. Nagaraja, V. Jayaramakrishnan, M.S. Jayalakshmy, R. Kant, Mat. Chem. Phys 194, 90–96 (2017)CrossRefGoogle Scholar
  8. 8.
    P.S.P. Silva, M.A.P. Goncalves, M.R. Silva, A. Zawadzka, B. Sahraoui, J.A. Paixao, J. Opt. Mat 84, 606–613 (2018)CrossRefGoogle Scholar
  9. 9.
    V. Nagarajan, A.J.N. Ananth, S. Ramaswamy, Cryst. Res. Technol. 53, 1700217 (2018)CrossRefGoogle Scholar
  10. 10.
    S.R. Marder, J.W. Perry, W.P. Schaefer, Science 245, 626 (1989)ADSCrossRefGoogle Scholar
  11. 11.
    P.J. Lacroix, R. Clement, K. Nakatani, J. Zyss, I. Ledoux, Science 263, 658 (1994)ADSCrossRefGoogle Scholar
  12. 12.
    P.S.P. Silva, C. Cardoso, M.R. Silva, J.A. Paixao, A.M. Beja, M.H. Garcia, N. Lopes, J. Phys. Chem. A 114, 2607–2617 (2010)CrossRefGoogle Scholar
  13. 13.
    U. Venkataramudu, C. Sahoo, S. Leelashree, M. Venkatesh, D. Ganesh, S.R.G. Naraharisetty, A.K. Chaudhary, S. Srinath, R. Chandrasekar, J. Mater. Chem. C (2018)  https://doi.org/10.1039/C8TC02638F CrossRefGoogle Scholar
  14. 14.
    S.D. Chemla, J. Zyss, Nonlinear optical properties of organic molecules and crystals, Vol. 1. Academic press, Orlando (1987)Google Scholar
  15. 15.
    J. Zyss, Molecular nonlinear optics. Materials, physics and devices. Academic press, Boston (1994)Google Scholar
  16. 16.
    A. Georgieva, N. Mintcheva, N. Trendafilova, M. Mitewa, Vib Spectrosc 27, 153–164 (2001)CrossRefGoogle Scholar
  17. 17.
    J. Zyss, J. Pecaut, J.P. Levy, R. Masse, Acta Crystllogr., Sect. B 49, 334–342 (1993)CrossRefGoogle Scholar
  18. 18.
    P.S.P. Silva, M.A.P. Goncalves, M.R. Silva, J.A. Paixao, Spectrochim. Acta, Part A 172, 156–162 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    K.T. Ma, N. Tin, G.P.A. Thirupathi, D.S. Yap, Richeson, J. Chem. Soc. Dalton Trans, (1999) 2947–2951Google Scholar
  20. 20.
    C. Cardoso, P.S.P. Silva, M.R. Silva, A.M. Beja, J.A. Paixao, F. Nogueira, A.J.F.N. Sobral, J. Mol. Struct 878, 169–176 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    P.S.P. Silva, C. Cardoso, M.R. Silva, J.A. Paixao, A.M. Beja, F. Nogueira, J. Mol. Struct 888, 92–98 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    E. Bravais, Crystallographiques, Academie des Sciences, Paris, 1913Google Scholar
  23. 23.
    C.F. Macrae, I.J. Bruno, J.A. Chisholm, P.R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. Van De Streek, P.A. Wood, Mercury CSD 2.0-New features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 41, 466–470 (2008)CrossRefGoogle Scholar
  24. 24.
    C.F. Macrae, P.R. Edington, P. McCabe, E. Pidcock, G.P. Shields, R. Taylor, M. Towler, J.V.D. Streek, J. Appl. Cryst 39, 453 (2006). Mercury (version1.4.1)CrossRefGoogle Scholar
  25. 25.
    G. SaravanaKumar, P. Murugakoothan, Spectrochim. Acta, Part A 131, 17–21 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    M.S. Kajamuhideen, K. Sethuraman, K. Ramamurthi, P. Ramasamy, J. Cryst. Growth 483, 16–25 (2018)ADSCrossRefGoogle Scholar
  27. 27.
    J. Coates, Encyclopedia of Analytical chemistry, John Wiley and sons, (2006) 1–23Google Scholar
  28. 28.
    N.Y. Maharani, A.C. Peter, S. Gopinath, S. Tamilselvan, M. Vimalan, I.V. Potheher, J. Mater. Sci.: Mater. Electron. 27, 5006 (2016)Google Scholar
  29. 29.
    T. Balakrishnan, S. Sathiskumar, K. Ramamurthi, S. Thamotharan, Mat. Chem. Phys 186, 115–123 (2017)CrossRefGoogle Scholar
  30. 30.
    K. Nivetha, S. Kalainathan, M. Yamada, Y. Kondo, F. Hamada, Mat. Chem. Phys 188, 131–142 (2017)CrossRefGoogle Scholar
  31. 31.
    M. Bass, Handbook of optics. Tata McGraw-Hill companies, inc., vol IV, 5.70–5.83 (2010)Google Scholar
  32. 32.
    S.S. Priya, A. Alexandar, P. Surendran, A. Lakshman, P. Rameshkumar, P. Sagayaraj, J. Opt. Mat 66, 434–441 (2017)CrossRefGoogle Scholar
  33. 33.
    P. Jayaprakash, M.P. Mohamed, M.L. Caroline, J. Mol. Struct 1134, 67–77 (2017)ADSCrossRefGoogle Scholar
  34. 34.
    R.M. Mohamed, M.K. Mishra, L.M. Al-Harbi, M.S. AlGhamdi, A.M. Asiri, C.M. Reddy, U. Ramamurty, Cryst. Growth Des. 15, 2479 (2015)CrossRefGoogle Scholar
  35. 35.
    E.M. Onistch, Mikroscopie, 2 (1947) 131–151Google Scholar
  36. 36.
    R. Mekala, R. Mani, I.B. Rietveld, P. Jagdish, R. Mathammal, H. Jiang, Cryst. Eng. Commun. 18, 8194–8206 (2016)CrossRefGoogle Scholar
  37. 37.
    N. Ponpandian, P. Balayya, A. Narayanasamy, J. Phys.: Condens. Matter 14, 3221–3237 (2002)ADSGoogle Scholar
  38. 38.
    C.M. Tu, L.H. Chou, Y.C. Chen, P. Huang, M. Rajaboopathi, C.W. Luo, K.H. Wu, V. Krishnakumar, T. Kobayashi, Opt. Express 24, 5039–5044 (2016)ADSCrossRefGoogle Scholar
  39. 39.
    V. Krishnakumar, M. Rajaboopathi, R. Nagalakshmi, Phys. B 407, 1119–1123 (2012)ADSCrossRefGoogle Scholar
  40. 40.
    K. Shanming, H. Haitao, F. Huiqing, Appl. Phys. Lett. 89, 182904–182907 (2006)CrossRefGoogle Scholar
  41. 41.
    L. Zhuo, F. Huiqing, J. Appl. Phys. 106, 054102 (2009)CrossRefGoogle Scholar
  42. 42.
    S.K. Kurtz, T.T. Perry, J. Appl. Phys. 39, 3798 (1968)ADSCrossRefGoogle Scholar
  43. 43.
    M. Krishnakumar, S. Karthick, K. Thirupugalmani, S. Brahadeeswaran, J. Opt. Mat 66, 79–93 (2017)CrossRefGoogle Scholar
  44. 44.
    K. Boopathi, R. Jagan, P. Ramasamy, Appl. Phys. A 122, 1 (2016)CrossRefGoogle Scholar
  45. 45.
    B. Babu, J. Chandrasekaran, R. Thirumurugan, K. Anitha, M. Saravanabhavan, J. Mater. Sci.: Mater. Electron. 28, 9704–9716 (2017)Google Scholar
  46. 46.
    M.S. Kajamuhideen, K. Sethuraman, K. Ramamurthi, P. Ramasamy, Opt. Laser. Technol 91, 159–165 (2017)ADSCrossRefGoogle Scholar
  47. 47.
    A. Silambarasan, P. Rajesh, P. Ramasamy, Spectrochimica acta part A: molecular and biomolecular spectroscopy, 118 (2014) 24–27ADSCrossRefGoogle Scholar
  48. 48.
    N. Vijayan, K. Nagarajan, A.M.Z. Slawin, C.K.S. Nair, G. Bhagavannarayana, Crystal Growth Des. 7, 445–448 (2007)CrossRefGoogle Scholar
  49. 49.
    R. Thirumurugan, K. Anitha, J. Mol. Struct 1146, 273–284 (2017)ADSCrossRefGoogle Scholar
  50. 50.
    J. Jayabharathi, V. Thanikachalam, K. Saravanan, N. Srinivasan, M.V. Perumal, Spectrochim. Acta A 78, 794–802 (2012)ADSCrossRefGoogle Scholar
  51. 51.
    J.F. Nye, Physical properties of crystals (Clarendon press, Oxford, 1960)Google Scholar
  52. 52.
    F. Zernike, J.E. Midwinter, Applied nonlinear optics (Wiley, Newyork, 1973)Google Scholar
  53. 53.
    Y.R. Sharma, Elementary organic spectroscopic principles and chemical applications (S. Chand & co, New Delhi, 2004)Google Scholar
  54. 54.
    D.A. Kleinman, Phys. Rev. 126, 1977–1979 (1962)ADSCrossRefGoogle Scholar
  55. 55.
    H. Chermette, J. Comput. Chem. 20, 129–154 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • M. S. Kajamuhideen
    • 1
  • K. Sethuraman
    • 1
    Email author
  • K. Ramamurthi
    • 2
  1. 1.School of PhysicsMadurai Kamaraj UniversityMaduraiIndia
  2. 2.Department of Biomedical EngineeringAarupadai Veedu Institute of Technology, Vinayaga Mission’s Research FoundationPaiyanoorIndia

Personalised recommendations