Applied Physics A

, 124:758 | Cite as

Synthesis of graphitic carbon nitride via direct polymerization using different precursors and its application in lithium–sulfur batteries

  • Shanshan YaoEmail author
  • Sikang Xue
  • Sihuang Peng
  • Ruiduo Guo
  • Zongzhen Wu
  • Xiangqian Shen
  • Tianbao Li
  • Li Wang


The graphitic carbon nitride (g-C3N4) materials were prepared via direct polymerization of urea, melamine, thiourea, and dicyandiamide at the same conditions, respectively. The samples were tested by various characterization tools, so that to study the influences of precursors on the physical and electrochemical properties of g-C3N4. The results showed that the as-prepared U-CN (from urea), M-CN (from melamine), T-CN (from thiourea), and D-CN (from dicyandiamide) exhibited significantly different microstructures. The synthesized g-C3N4 powders were used as sulfur matrixes for lithium–sulfur batteries. The electrochemical properties revealed that urea-derived C3N4 showed the highest initial capacity of 1207 mAh g−1. Furthermore, it possesses excellent cycling stability for 500 cycles and remains capacity of 517 mAh g−1 at 0.37 mA cm−2. This work could provide a new perspective for the selection of proper precursors and the in-depth study of the electrochemical behaviors of the microstructure of g-C3N4.



This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51874146, 51504101), the China Postdoctoral Science Foundation (Grant Nos. 2018T110551, 2017M621640), the Six Talent Peaks Project of Jiangsu Province (XCL-125), the Natural Science Foundation of Jiangsu Province (Grant No. BK20150514), the Natural Science Foundation of Jiangsu Provincial Higher Education of China (Grant No. 15KJB430006), the Start-up Foundation of Jiangsu University for Senior Talents (Grant No. 15JDG014).

Supplementary material

339_2018_2189_MOESM1_ESM.docx (784 kb)
Supplementary material 1 (DOCX 784 KB)

Supplementary material 2 (AVI 1862 KB)


  1. 1.
    G. Jeong, Y.U. Kim, H. Kim, Y.J. Kim, H.J. Sohn, Prospective materials and applications for Li secondary batteries. Energy Environ. Sci 4, 1986–2002 (2011)CrossRefGoogle Scholar
  2. 2.
    K.A. Kurilenko, O.A. Shlyakhtin, O.A. Brylev, D.I. Petukhov, A.V. Garshev, Effect of nanostructured carbon coatings on the electrochemical performance of Li1.4Ni0.5Mn0.5O2+x-based cathode materials. Beilstein J. Nanothechnol. 7, 1960–1970 (2016)CrossRefGoogle Scholar
  3. 3.
    J.Q. Li, C. Han, M.X. Jing, H. Yang, X.Q. Shen, S.B. Qin, Flake-like oxygen-deficient lithium vanadium oxides as a high ionic and electronic conductive cathode materials for high power Li-ion battery. Appl. Phys. A 124, 450 (2018)ADSCrossRefGoogle Scholar
  4. 4.
    B.Y. Sun, Q.L. Liu, W.S. Chen, N. Wang, J.J. Gu, W. Zhang, H.L. Su, D. Zhang, Micron-sized encapsulated-type MoS2/C hybrid particles with an effective confinement effect for improving the cycling performance of LIB anodes. J. Mater. Chem. A 6, 6289–6298 (2018)CrossRefGoogle Scholar
  5. 5.
    N. Wang, Q.L. Liu, B.Y. Sun, J.J. Gu, B.X. Yu, W. Zhang, D. Zhang, N-doped catalytic graphitized hard carbon for high-performance lithium/sodium-ion batteries. Sci. Rep. UK 8, 9934 (2018)ADSCrossRefGoogle Scholar
  6. 6.
    D.M. Kang, Q.L. Liu, M. Chen, J.J. Gu, D. Zhang, Spontaneous cross-linking for fabrication of nanohybrids embedded with size-controllable particles. ACS Nano 10, 889–898 (2016)CrossRefGoogle Scholar
  7. 7.
    R. Zhuang, S. Yao, M. Jing, X. Shen, T. Li, S. Qin, Synthesis and characterization of electrospun molybdenum dioxide–carbon nanofibers as sulfur matrix additives for rechargeable lithium–sulfur battery applications. Beilstein J. Nanothechnol. 9, 262–270 (2018)CrossRefGoogle Scholar
  8. 8.
    J. Liu, W. Li, L. Duan, X. Li, L. Ji, Z. Geng, K. Huang, L. Lu, A graphene-like oxygenated carbon nitride material for improved cycle-life lithium/sulfur batteries. Nano Lett. 15, 5137–5142 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    H. Tang, S. Yao, M. Jing, X. Wu, J. Hou, X. Qian, D. Rao, Q. Shen, Nickel fibers/sulfur composites cathode with enhanced electrochemical performance for rechargeable lithium-sulfur batteries. Electrochim. Acta 176, 442–447 (2015)CrossRefGoogle Scholar
  10. 10.
    H.L. Lee, Z. Sofer, V. Mazanek, J. Luxa, C.K. Chua, M. Pumera, Graphitic carbon nitride: effects of various precursors on the structural, morphological and electrochemical sensing properties. Appl. Mater. Today 8, 150–162 (2017)CrossRefGoogle Scholar
  11. 11.
    L. Ma, K.E. Hendrickson, S. Wei, L.A. Archer, Nanomaterials: Science and applications in the lithium–sulfur battery. Nano Today 10, 315–338 (2015)CrossRefGoogle Scholar
  12. 12.
    Q. Pang, X. Liang, C.Y. Kwok, L.F. Nazar, Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 1, 16132 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    J.L. Hou, S.S. Yao, X. Wu, M.X. Jing, D.W. Rao, X.Q. Shen, X.M. Xi, K.S. Xiao, Fabrication and characterization of non-woven carbon nanofibers as functional interlayer for rechargeable lithium sulfur battery. J. Nanosci. Nanotechnol. 17, 1857–1862 (2017)CrossRefGoogle Scholar
  14. 14.
    M. Barghamadi, A.S. Best, A.I. Bhatt, A.F. Hollenkamp, P.J. Mahon, M. Musameh, T. Rjither, Effect of LiNO3 additive and pyrrolidinium ionic liquid on the solid electrolyte interphase in the lithium–sulfur battery. J. Power Sources 295, 212–220 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    H.J. Peng, D.W. Wang, J.Q. Huang, X.B. Cheng, Z. Yuan, F. Wei, Q. Zhang, Janus separator of polypropylene-supported cellular graphene framework for sulfur cathodes with high utilization in lithium–sulfur batteries. Adv. Sci. 3, 1500268 (2016)CrossRefGoogle Scholar
  16. 16.
    Y.J. Li, J.M. Fan, M.S. Zheng, Q.F. Dong, A novel synergistic composite with multi-functional effects for high-performance Li–S batteries. Energy Environ. Sci. 9, 1998–2004 (2016)CrossRefGoogle Scholar
  17. 17.
    X. Liang, C. Hart, Q. Pang, A. Garsuch, T. Weiss, L.F. Nazar, A highly efficient polysulfide mediator for lithium–sulfur batteries. Nat. Commun. 6, 5682 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    X.Q. Zhang, B. He, W.C. Li, A.H. Lu, Hollow carbon nanofibers with dynamic adjustable pore sizes and closed ends as hosts for high-rate lithium-sulfur battery cathodes. Nano Res. 11(3), 1238–1246 (2018)CrossRefGoogle Scholar
  19. 19.
    H. Li, X. Yang, X. Wang, M. Liu, F. Ye, J. Wang, Y. Zhang, Dense integration of graphene and sulfur through the soft approach for compact lithium/sulfur battery cathode. Nano Energy 12, 468–475 (2015)CrossRefGoogle Scholar
  20. 20.
    J. Song, M.L. Gordin, T. Xu, S. Chen, Z. Yu, H. Sohn, D. Wang, Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium–sulfur battery cathodes. Angew. Chem. Int. Ed. 54, 4325–4329 (2015)CrossRefGoogle Scholar
  21. 21.
    J.Q. Huang, Z.L. Xu, S. Abouali, M.A. Garakani, J.K. Kim, Porous graphene oxide/carbon nanotube hybrid films as interlayer for lithium-sulfur batteries. Carbon 99, 624–632 (2016)CrossRefGoogle Scholar
  22. 22.
    S.S. Yao, S.K. Xue, Y.J. Zhang, X.Q. Shen, X.Y. Qian, T.B. Li, K.S. Xiao, S.B. Qin, J. Xiang, Synthesis, characterization, and electrochemical performance of spherical nanostructure of Magnéli phase Ti4O7. J. Mater. Sci. Mater. Electron. 28, 7264–7270 (2017)CrossRefGoogle Scholar
  23. 23.
    K. Chen, Z. Sun, R. Fang, Y. Shi, H.M. Cheng, F. Li, Metal–organic frameworks (MOFs)-derived nitrogen-doped porous carbon anchored on graphene with multifunctional effects for lithium-sulfur batteries. Adv. Funct. Mater. 2018, 1707592 (2018)CrossRefGoogle Scholar
  24. 24.
    M. Zhang, C. Yu, C. Zhao, X. Song, X. Han, S. Liu, J. Qiu, Cobalt-embedded nitrogen-doped hollow carbon nanorods for synergistically immobilizing the discharge products in lithium–sulfur battery. Energy Storage Mater. 5, 223–229 (2016)CrossRefGoogle Scholar
  25. 25.
    Y. Qiu, W. Li, W. Zhao, G. Li, Y. Hou, M. Liu, S. Yang, High-rate, ultralong cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene. Nano Lett. 14, 4821–4827 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    X. Bu, J. Li, S. Yang, J. Sun, Y. Deng, Y. Yang, G. Ding, Surface modification of C3N4 through oxygen-plasma treatment: a simple way toward excellent hydrophilicity. ACS Appl. Mater. Interfaces 8, 31419–31425 (2016)CrossRefGoogle Scholar
  27. 27.
    G. Zhang, C. Huang, X. Wang, Dispersing molecular cobalt in graphitic carbon nitride frameworks for photocatalytic water oxidation. Small 11, 1215–1221 (2015)CrossRefGoogle Scholar
  28. 28.
    Z. Zhang, K. Leinenweber, M. Bauer, L.A. Garvie, P.F. McMillan, G.H. Wolf, High-pressure bulk synthesis of crystalline C6N9H3·HCl: a novel C3N4 graphitic derivative. J. Am. Chem. 123, 7788–7796 (2001)CrossRefGoogle Scholar
  29. 29.
    H. Xu, J. Yan, Y. Xu, Y. Song, H. Li, J. Xia, H. Wan, Novel visible-light-driven AgX/graphite-like C3N4 (X = Br, I) hybrid materials with synergistic photocatalytic activity. Appl. Catal B Environ. 129, 182–193 (2013)CrossRefGoogle Scholar
  30. 30.
    P.K. Chuang, K.H. Wu, T.F. Yeh, H. Teng, Extending the π-conjugation of g-C3N4 by incorporating aromatic carbon for photocatalytic H2 evolution from aqueous solution. ACS Sustain. Chem. Eng. 227, 153–160 (2016)Google Scholar
  31. 31.
    L. Stagi, D. Chiriu, C.M. Carbonaro, R. Corpino, P.C. Ricci, Structural and optical properties of carbon nitride polymorphs. Diam. Relat. Mater. 68, 84–92 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    S.S. Yao, S.K. Xue, S. H.Peng, M.X. Jing, X.Y. Qian, X.Q. Shen, T.B. Li, Y.H. Wang, Synthesis of graphitic carbon nitride at different thermal-pyrolysis temperature of urea and it application in lithium sulfur batteries. J. Mater. Sci. Mater. Electron. 29, 17921–17930 (2018)CrossRefGoogle Scholar
  33. 33.
    Z. Zeng, H. Yu, X. Quan, S. Chen, S. Zhang, Structuring phase junction between tri-s-triazine and triazine crystalline C3N4 for efficient photocatalytic hydrogen evolution. Appl. Catal. B Environ. 227, 153–160 (2018)CrossRefGoogle Scholar
  34. 34.
    M. Zhou, Z. Hou, L. Zhang, Y. Liu, Q. Gao, X. Chen, n/n junctioned g-C3N4 for enhanced photocatalytic H2 generation. Sustain. Energy Fuels 1, 317–323 (2017)CrossRefGoogle Scholar
  35. 35.
    Y. Li, Q.L. Liu, D.M. Kang, J.J. Gu, W. Zhang, D. Zhang, Free-drying assisted synthesis of hierarchical porous carbons for high-performance supercapacitors. J. Mater. Chem. A 3, 21016–21022 (2015)CrossRefGoogle Scholar
  36. 36.
    S. Panneri, P. Ganguly, B.N. Nair, A.A.P. Mohamed, K.G.K. Warrier, U.N.S. Hareesh, Role of precursors on the photophysical properties of carbon nitride and its application for antibiotic degradation. Environ. Sci. Pollut. R 24, 8609–8618 (2017)CrossRefGoogle Scholar
  37. 37.
    F.Y. Zhou, Q.L. Liu, D.M. Kang, J.J. Gu, W. Zhang, D. Zhang, A 3D hierarchical hybrid nanostructure of carbon nanotubes and activated carbon for high-performance supercapacitors. J. Mater. Chem. A 2, 3505–3512 (2014)CrossRefGoogle Scholar
  38. 38.
    J. Wang, J. Huang, H. Xie, A. Qu, Synthesis of g-C3N4/TiO2 with enhanced photocatalytic activity for H2 evolution by a simple method. Int. J. Hydrog. 39, 6354–6363 (2014)CrossRefGoogle Scholar
  39. 39.
    X. Tao, J. Wang, C. Liu, H. Yao, G. Zheng, C. Zu, Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium–sulfur battery design. Nat. Commun. 7, 11203 (2016)ADSCrossRefGoogle Scholar
  40. 40.
    B. Li, C. Han, Y.B. He, C. Yang, H. Du, Q.H. Yang, F. Kang, Facile synthesis of Li4Ti5O12/C composite with super rate performance. Energy Environ. Sci. 5, 9595–9602 (2012)CrossRefGoogle Scholar
  41. 41.
    K. Luan, S. Yao, Y. Zhang, R. Zhuang, J. Xiang, X. Shen, S. Qin, Poly (3, 4-ethyleendioxythiophene) coated titanium dioxide nanoparticles in situ synthesis and their application for rechargeable lithium sulfur batteries. Electrochim. Acta 252, 461–469 (2017)CrossRefGoogle Scholar
  42. 42.
    P. Mei, X.L. Wu, H. Xie, L. Sun, Y. Zeng, J. Zhang, C. Yao, LiV3O8 nanorods as cathode materials for high-power and long-life rechargeable lithium-ion batteries. RSC Adv. 4, 25494–25501 (2014)CrossRefGoogle Scholar
  43. 43.
    H. Tang, S. Yao, S. Xue, M. Liu, L. Chen, M. Jing, X. Shen, T. Li, K. Xiao, S. Qin, In-situ synthesis of carbon@Ti4O7 non-woven fabric as a multifunctional interlayer for excellent lithium sulfur battery. Electrochim. Acta 263, 158–167 (2018)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Shanshan Yao
    • 1
    Email author
  • Sikang Xue
    • 1
  • Sihuang Peng
    • 1
  • Ruiduo Guo
    • 1
  • Zongzhen Wu
    • 1
  • Xiangqian Shen
    • 1
    • 2
  • Tianbao Li
    • 2
  • Li Wang
    • 2
  1. 1.Institute for Advanced Materials, College of Materials Science and EngineeringJiangsu UniversityZhenjiangPeople’s Republic of China
  2. 2.Hunan Engineering Laboratory of Power Battery Cathode MaterialsChangsha Research Institute of Mining and MetallurgyChangshaPeople’s Republic of China

Personalised recommendations