Advertisement

Applied Physics A

, 124:757 | Cite as

Coding two-dimensional patterns into mode spectrum of silicon microcavity covered with a phase-change film

  • Farrabi SobhiEmail author
  • Yuya Kihara
  • Daichi Kataiwa
  • Yoshihiro Taguchi
  • Masashi Kuwahara
  • Toshiharu Saiki
Article
  • 82 Downloads

Abstract

In the present study, we propose a new approach for coding two-dimensional patterns (spatial information or images) into mode spectra of a silicon microcavity. Electric field distributions associated with each cavity mode generated by the microcavity provide a basis (dictionary) for image encoding. The cavity is covered with a layer of phase-change material (Ge2Sb2Te5; GST), which enables the electric field distribution to be memorized and the images to be encoded into absorption spectra via the difference in the refractive index between the crystalline and amorphous phases. In numerical simulations, a clear modification of the absorption spectra of the GST layer upon partial crystallization was demonstrated. We fabricated silicon microcavities covered with a GST layer and confirmed that spectral features originating from individual cavity modes can be greatly modified upon phase change.

Notes

Acknowledgements

The present study was supported in part by JSPS through KAKENHI Grant number 24226006 and the Advanced Research Networks component of the Core-to-Core Program, and by the Advanced Photon Science Alliance Project of the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT).

References

  1. 1.
    B.A. Olshausen, D.J. Field, Curr. Opin. Neurobiol. 14, 481 (2004)CrossRefGoogle Scholar
  2. 2.
    A. Spanne, H. Jörntell, Trends Neurosci. 38, 417 (2015)CrossRefGoogle Scholar
  3. 3.
    P.M. Sheridan, F. Cai, C. Du, W. Ma, Z. Zhang, W.D. Lu, Nat. Nanotechnol. 12, 784 (2017)CrossRefGoogle Scholar
  4. 4.
    P.Y. Ma, B.J. Shastri, T.F. De Lima, A.N. Tait, M.A. Nahmias, P.R. Prucnal, Opt. Expr. 25, 33504 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    J. Chu, X. Li, Q. Smithwick, D. Chu, Opt. Lett. 41, 1490 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    J. Chu, D. Chu, Q. Smithwitck, Sci. Rep. 7, 43757 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    E. Xifré-Pérez, R. Fenollosa, F. Meseguer, Opt. Expr. 19, 3455 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    T. Saiki, Appl. Phys. A 123, 577 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    R. Akimoto, H. Handa, S. Shindo, Y. Sutou, M. Kuwahara, M. Naruse, T. Saiki, Opt. Expr. 25, 26825 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    M. Wuttig, N. Yamada, Nat. Mater. 6, 824 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    H.-S.P. Wong, S. Kim, J. Liang, S. Raoux, B. Rajendran, J.P. Reifenberg, M. Asheghi, K.E. Goodson, Proc. IEEE 98, 2201 (2010)CrossRefGoogle Scholar
  12. 12.
    T. Hasegawa, T. Ohno, K. Terabe, T. Tsuruoka, T. Nakayama, J.K. Gimzawski, M. Aono, Adv. Mater. 22, 1831 (2010)CrossRefGoogle Scholar
  13. 13.
    M. Lee, W. Lee, S. Choi, J.-W. Jo, J. Kim, S.K. Park, Y.-H. Kim, Adv. Mater. 29, 1700951 (2017)CrossRefGoogle Scholar
  14. 14.
    K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, M. Wuttig, Nat. Mater. 7, 653 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Farrabi Sobhi
    • 1
    Email author
  • Yuya Kihara
    • 1
  • Daichi Kataiwa
    • 1
  • Yoshihiro Taguchi
    • 1
  • Masashi Kuwahara
    • 2
  • Toshiharu Saiki
    • 1
  1. 1.Graduate School of Science and TechnologyKeio UniversityYokohamaJapan
  2. 2.National Institute of Advanced Industrial Science and TechnologyTsukubaJapan

Personalised recommendations