Advertisement

Applied Physics A

, 124:751 | Cite as

Ni-doped MoS2 biosensor: a promising candidate for early diagnosis of lung cancer by exhaled breathe analysis

  • Gang Zhao
  • Meng LiEmail author
Article
  • 108 Downloads

Abstract

Lung cancer prognosis in its early stage has received considerable attention due to its high incidence and mortality rates. This work proposed a novel candidate, Ni-doped MoS2, as a promising biosensor for lung cancer prognosis through exhaled breathe analysis, based on density functional theory (DFT) method. Calculated results indicated that Ni-MoS2 would have desirable adsorption performance towards three typical (volatile organic compounds) VOCs of lung cancer patients, leading to dramatic change in geometric and electronic property of Ni-doped monolayer. These subsequently could cause visible change in conductivity for Ni-MoS2 based bio-devices, giving rise to the sensing mechanism for its real application. In addition, desorption of these gas molecules from the Ni-MoS2 surface could be fulfilled through heating process, due to the determined physisorption in these adsorbing systems, which allows the recyclable use of the biosensors. Our calculations aim at proposing advanced sensing material for experimentalists to exploit potential progress in lung cancer prognosis through exhaled air detection.

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

References

  1. 1.
    Z. Altintas, I. Tothill, Biomarkers and biosensors for the early diagnosis of lung cancer[J]. Sens. Actuators B Chem. 188(188), 988–998 (2013)CrossRefGoogle Scholar
  2. 2.
    D. Huo, Y. Xu, C. Hou, M. Yang, H. Fa, A novel optical chemical sensor based AuNR-MTPP and dyes for lung cancer biomarkers in exhaled breath identification[J]. Sens. Actuators B Chem. 199(6), 446–456 (2014)CrossRefGoogle Scholar
  3. 3.
    M. Varellagarcia, J. Kittelson, A.P. Schulte, K.O. Vu, H.J. Wolf, C. Zeng, F.R. Hirsch, T. Byers, T. Kennedy, Y.E. Miller, Multi-target interphase fluorescence in situ hybridization assay increases sensitivity of sputum cytology as a predictor of lung cancer[J]. Cancer Detect. Prev. 28(4), 244–251 (2004)CrossRefGoogle Scholar
  4. 4.
    T. Kikuchi, D.P. Carbone, Proteomics analysis in lung cancer: challenges and opportunities[J]. Respirology 12(1), 22–28 (2007)CrossRefGoogle Scholar
  5. 5.
    M. Lichy, P. Aschoff, C.A. Stemmer, W. Horger, C. Mueller-Horvat, G. Steidle, M. Horger, J. Schafer, S. Eschmann, B. Kiefer, Tumor detection by diffusion-weighted MRI and ADC-mapping-initial clinical experiences in comparison to PET-CT[J]. Invest. Radiol. 42(9), 605 (2007)CrossRefGoogle Scholar
  6. 6.
    C.I. Henschke, F. David, Yankelevitz. CT screening for lung cancer[J]. Radiol. Clin. North Am. 49(4), 477–490 (2009)Google Scholar
  7. 7.
    V.H. Tran, H.P. Chan, M. Thurston, P. Jackson, C. Lewis, D. Yates, G. Bell, S. Paul, Thomas, Breath analysis of lung cancer patients using an electronic nose detection system[J]. IEEE Sens. J. 10(9), 1514–1518 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    L. Pauling, A.B. Robinson, R. Teranishi, P. Cary, Quantitative Analysis of urine vapor and breath by gas-liquid partition chromatography[J]. Proc Natl Acad Sci USA 69(4), 2374–2376 (1971)ADSCrossRefGoogle Scholar
  9. 9.
    M. Phillips, Breath tests in medicine[J]. Sci. Am. 267(1), 74–79 (1992)ADSCrossRefGoogle Scholar
  10. 10.
    C. Xing, B.S. Ms, W.M. Fengjuan Xu, M.S. Yue, B.S. Yuefeng Pan, W. Deji Lu, M.D. Ping, M.D. Kejing Ying, M.S. Enguo Chen, W. Zhang, A study of the volatile organic compounds exhaled by lung cancer cells in vitro for breath diagnosis[J]. Cancer 110(4), 835–844 (2007)CrossRefGoogle Scholar
  11. 11.
    T. Itoh, T. Nakashima, T. Akamatsu, N. Izu, W. Shin, Nonanal gas sensing properties of platinum, palladium, and gold-loaded tin oxide VOCs sensors[J]. Sens. Actuators B Chem. 187(1), 135–141 (2013)CrossRefGoogle Scholar
  12. 12.
    W. Miekisch, J.K. Schubert, F.E. Gabriele, Noeldge-Schomburg, Diagnostic potential of breath analysis—focus on volatile organic compounds[J]. Clin. Chim. Acta. 347(1), 25–39 (2004)CrossRefGoogle Scholar
  13. 13.
    K. Jun. YuH. Young, Young, Baek. Inbok, Ahn. Changgeun, Lee. Bong Kuk, Kim. Yarkyeon, Yoon. Yong Sun, Lim. Ji Eun, Lee. Byeongjun, Jang. Won Ik. Use of Gas-Sensor Array Technology in Lung Cancer Diagnosis[J]. Journal of Sensor Science & Technology, 2013, 22 (4), 249–255Google Scholar
  14. 14.
    Q. Wan, X. Zhang, Y. Gui, Theoretical study on Pt-doped carbon nanotubes used to detect typical exhaled gases of lung cancer[J]. J. Comput. Theor. Nanosci. 12(10), 3412–3417 (2015)CrossRefGoogle Scholar
  15. 15.
    B. Bogusław, L. Tomasz, J. Tadeusz, W.-P. Anna, W. Marta, R. Joanna. Identification of volatile lung cancer markers by gas chromatography–mass spectrometry: comparison with discrimination by canines[J]. Anal. Bioanal. Chem. 404(1), 141–146 (2012)CrossRefGoogle Scholar
  16. 16.
    Y. Wang, Y. Hu, D. Wang, K. Yu, L. Wang, Y. Zou, C. Zhao, X. Zhang, P. Wang, K. Ying, The analysis of volatile organic compounds biomarkers for lung cancer in exhaled breath, tissues and cell lines[J]. Cancer Biomarkers 11(4), 129 (2012)CrossRefGoogle Scholar
  17. 17.
    Q. Wan, Y. Xu, X. Chen, H. Xiao, Exhaled gas detection by a novel Rh-doped CNT biosensor for prediagnosis of lung cancer: a DFT study[J]. Mol. Phys. 116(17), 2205–2212 (2018)ADSCrossRefGoogle Scholar
  18. 18.
    K. Xu, H.Yan,C.Fu Tan, Y. Lu, Y. Li, G.W. Ho, R. Ji, M. Hong, Hedgehog inspired CuO nanowires/Cu2O composites for broadband visible-light-driven recyclable surface enhanced Raman scattering[J]. Adv. Opt. Mater. 5, 1701167 (2018)CrossRefGoogle Scholar
  19. 19.
    Z. Zhen, Yu Wei, W. Jing, L. Dan, X. Qiao, X. Qin, T. Wang, Ultrasensitive surface-enhanced Raman scattering sensor of gaseous aldehydes as biomarkers of lung cancer on dendritic Ag nanocrystals[J]. Anal. Chem. 89(3), 1416 (2017)CrossRefGoogle Scholar
  20. 20.
    M. Hakim, Y.Y. Broza, O. Barash, N. Peled, M. Phillips, A. Amann, H. Haick, Volatile organic compounds of lung cancer and possible biochemical pathways[J]. Chem. Rev. 112(11), 5949–5966 (2012)CrossRefGoogle Scholar
  21. 21.
    T. Itoh, T. Miwa, A. Tsuruta, T. Akamatsu, N. Izu, W. Shin, J. Park, T. Hida, T. Eda, Y. Setoguchi, Development of an exhaled breath monitoring system with semiconductive gas sensors, a gas condenser unit, and gas chromatograph columns[J]. Sensors 16(11), 1891 (2016)CrossRefGoogle Scholar
  22. 22.
    M. Phillips, N. Altorki, J.H. Austin, R.B. Cameron, R.N. Cataneo, J. Greenberg, R. Kloss, R.A. Maxfield, M.I. Munawar, H.I. Pass, Prediction of lung cancer using volatile biomarkers in breath[J]. Cancer Biomarkers 3(2), 95 (2007)CrossRefGoogle Scholar
  23. 23.
    G. Peng, U. Tisch, O. Adams, M. Hakim, N. Shehada, Y.Y. Broza, S. Billan, R. Abdah-Bortnyak, A. Kuten, H. Haick, Diagnosing lung cancer in exhaled breath using gold nanoparticles[J]. Nat. Nanotechnol. 4(10), 669–673 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    A. Sharma, M.Shahid Anu, M. Khan, Husain, S. Khan, A. Srivastava. Sensing of CO and NO on Cu-doped MoS2 monolayer based single electron transistor: a first principles study[J]. IEEE Sens. J. 99:1–1 (2018)Google Scholar
  25. 25.
    M. Donarelli, S. Prezioso, F. Perrozzi, F. Bisti, M. Nardone, L. Giancaterini, C. Cantalini, L. Ottaviano. Response to NO2 and other gases of resistive chemically exfoliated MoS2-based gas sensors[J]. Sens. Actuators B Chem. 207, 602–613 (2015)CrossRefGoogle Scholar
  26. 26.
    D. Zhang, J. Wu, P. Li, Y. Cao, Room-temperature SO2 gas-sensing properties based on a metal-doped MoS2 nanoflower: an experimental and density functional theory investigation[J]. J. Mater. Chem. A 5, 39 (2017)ADSGoogle Scholar
  27. 27.
    L. Kou, Tuning magnetism and electronic phase transitions by strain and electric field in zigzag MoS2 nanoribbons[J]. J. Phys. Chem. Lett. 3(20), 2934 (2012)CrossRefGoogle Scholar
  28. 28.
    P. Wu, N. Yin, P. Li, W. Cheng, M. Huang, The adsorption and diffusion behavior of noble metal adatoms (Pd, Pt, Cu, Ag and Au) on a MoS2 monolayer: a first-principles study[J]. Phys. Chem. Chem. Phys. 19, (31) (2017)ADSGoogle Scholar
  29. 29.
    Y. Fan, J. Zhang, Y. Qiu, J. Zhu, Y. Zhang, G. Hu, A DFT study of transition metal (Fe, Co, Ni, Cu, Ag, Au, Rh, Pd, Pt and Ir)-embedded monolayer MoS2 for gas adsorption[J]. Comput. Mater. Sci. 138, 255–266 (2017)CrossRefGoogle Scholar
  30. 30.
    Y. Li, X. Zhang, D. Chen, S. Xiao, J. Tang, Adsorption behavior of COF2 and CF4 gas on the MoS2 monolayer doped with Ni: a first-principles study[J]. Appl. Surf. Sci. 5, 443 (2018)Google Scholar
  31. 31.
    X. Zhangab, Y. Guiac, H. Xiaoa, Y. Zhang, Analysis of adsorption properties of typical partial discharge gases on Ni-SWCNTs using density functional theory[J]. Appl. Surf. Sci. 9, 47–54 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    B. Delley, From molecules to solids with the DMol3 approach[J]. J. Chem. Phys. 113(18), 7756–7764 (2000)ADSCrossRefGoogle Scholar
  33. 33.
    H. Cui, X. Zhang, D. Chen, Ju Tang, Adsorption mechanism of SF6 decomposed species on pyridine-like PtN3 embedded CNT: A DFT study[J]. Appl. Surf. Sci. 32, 447 (2018)Google Scholar
  34. 34.
    B. Delley, Hardness conserving semilocal pseudopotentials[J]. Phys. Rev. B Condensed Matter 66(15), 155125 (2002)ADSCrossRefGoogle Scholar
  35. 35.
    A. Tkatchenko, R.A. Stasio, M. Head-Gordon, M. Scheffler, Dispersion-corrected Møller-Plesset second-order perturbation theory[J]. J Chem Phys 131(9), 171–171 (2009)CrossRefGoogle Scholar
  36. 36.
    D. Chen, X. Zhang, J.U. Tang, H. Cui, Y. Li. Noble metal (Pt or Au)-doped monolayer MoS2 as a promising adsorbent and gas-sensing material to SO2, SOF2 and SO2F2 : a DFT study[J]. Appl. Phys. A Mater. Sci. Process. 124(2):194 (2018)ADSCrossRefGoogle Scholar
  37. 37.
    H. Cui, X. Zhang, J. Zhang, Ju Tang, Adsorption behaviour of SF6 decomposed species onto Pd4-decorated single-walled CNT: a DFT study[J]. Mol. Phys. 53, 1–7 (2018)Google Scholar
  38. 38.
    W. Ju, T. Li, X. Su, H. Li, X. Li, D. Ma, Au cluster adsorption on perfect and defective MoS2 monolayers: structural and electronic properties[J]. Phys. Chem Chem. Phys. 51:19 (2017)Google Scholar
  39. 39.
    R. Kronberg, M. Hakala, N. Holmberg, K. Laasonen, Hydrogen adsorption on MoS2-surfaces: a DFT study on preferential sites and the effect of sulfur and hydrogen coverage[J]. Phys. Chem. Chem. Phys. 19, 24 (2017)CrossRefGoogle Scholar
  40. 40.
    D. Yang, S.J. Sandoval, W.M. Divigalpitiya, J.C. Irwin, Structure of single-molecular-layer MoS2[J]. Phys.Rev.B 43(14), 12053–12056 (1991)ADSCrossRefGoogle Scholar
  41. 41.
    A. Shokri, N. Salami, Gas sensor based on MoS2 monolayer[J]. Sens. Actuators B Chem. 236, 378–385 (2016)CrossRefGoogle Scholar
  42. 42.
    L. Yuwen, F. Xu, B. Xue, Z. Luo, Q. Zhang, B. Bao, S. Su, L. Weng, W. Huang, L. Wang, General synthesis of noble metal (Au, Ag, Pd, Pt) nanocrystal modified MoS2 nanosheets and the enhanced catalytic activity of Pd-MoS2 for methanol oxidation[J]. Nanoscale 6(11), 5762–5769 (2014)ADSCrossRefGoogle Scholar
  43. 43.
    D. Ma, W. Ju, T. Li, X. Zhang, C. He, B. Ma, Z. Lu, The adsorption of CO and NO on the MoS2 monolayer doped with Au, Pt, Pd, or Ni: A first-principles study[J]. Appl. Surf. Sci. 383, 98–105 (2016)ADSCrossRefGoogle Scholar
  44. 44.
    B. Zhao, C.Y. Li, L.L. Liu, B. Zhou, Q.K. Zhang, Z.Q. Chen, Z. Tang, Adsorption of gas molecules on Cu impurities embedded monolayer MoS2: A first-principles study[J]. Appl. Surf. Sci. 382, 280–287 (2016)ADSCrossRefGoogle Scholar
  45. 45.
    S. Zhao, J. Xue, K. Wei, Gas adsorption on MoS2 monolayer from first-principles calculations[J]. Chem. Phys. Lett. 595–596(3). 35–42 (2014)ADSCrossRefGoogle Scholar
  46. 46.
    X. Zhang, H. Cui, D. Chen, X. Dong, Ju Tang, Electronic structure and H2S adsorption property of Pt3 cluster decorated (8, 0) SWCNT[J]. Appl. Surf. Sci. 2, 428 (2018)Google Scholar
  47. 47.
    A. De Jong, Sijbrand, J. Haas, G. Qian, D. Blazey, A. Hedin, Sanchezhernandez, Ann Heinson, Jose Guilherme Lima, Ronald Madaras, Arnaud Duperrin. Atomically thin MoS2: A new direct-gap semiconductor[J]. 2010Google Scholar
  48. 48.
    A.S. Rad, S.S. Shabestari, S. Mohseni, Samaneh Alijantabar Aghouzi. Study on the adsorption properties of O3, SO2, and SO3 on B-doped graphene using DFT calculations[J]. J. Solid State Chem. 237, 204–210 (2016)ADSCrossRefGoogle Scholar
  49. 49.
    P. Pyykkö, M. Atsumi, Molecular single-bond covalent radii for elements 1-118[J]. Chemistry 15(1), 186–197 (2009)CrossRefGoogle Scholar
  50. 50.
    S.W. Han, G.B. Cha, Y. Park, S.C. Hong, Hydrogen physisorption based on the dissociative hydrogen chemisorption at the sulphur vacancy of MoS2 surface[J]. Sci Rep 7, 1 (2017)ADSCrossRefGoogle Scholar
  51. 51.
    A.J. Yang, D.W. Wang, X.H. Wang, J.F. Chu, P.L. Lv, Y. Liu, Phosphorene: A promising candidate for highly sensitive and selective SF6 decomposition gas sensors[J]. IEEE Electron Device Lett. 38(7), 963–966 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Experimental Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan UniversitySichuanChina
  2. 2.Department of OncologyPeople’s Hospital of XinjinSichuanChina

Personalised recommendations