Advertisement

Applied Physics A

, 124:763 | Cite as

Carbon electrode with conductivity improvement using silver nanowires for high-performance supercapacitor

  • Hengyue Li
  • Hui Guo
  • Keqing Huang
  • Biao Liu
  • Chujun Zhang
  • Xiaohua Chen
  • Xiaowen XuEmail author
  • Junliang YangEmail author
Article

Abstract

Increasing the energy density without sacrificing power density is a key technical problem all the time that hinders the further application of supercapacitor. A good electrical conductivity electrode determines whether the supercapacitor can be charged–discharged at the high current density and the electric energy stored can be effectively utilized. Silver nanowires (AgNWs) acted as an electrode material in supercapacitor not only improve the electrical conductivity, but also enhance the mechanical stability. Here, we provide a simple and low-cost way to effectively improve the conductivity of carbon electrode by adding suitable AgNWs dispersed in alcohol. A single cell with a composite electrode composed of activated carbon (AC) and 4% AgNWs has a capacitance of 215 F g− 1, an excellent rate performance of 75% at 10 A g− 1, and a good cycling stability after 5000 cycles, showing a great improvement compared with bare AC. The results suggest that the composite electrode composed of AC and AgNWs have a great potential application in supercapacitor commercialization.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51673214) and the National Key Research and Development Program of China (2017YFA0206600).

References

  1. 1.
    S.B. Liu. Y. Zhao. B.H. Zhang. H. Xia. J.F. Zhou. W.K. Xie. H.J. Li. Nano-micro carbon spheres anchored on porous carbon derived from dualbiomass as high rate performance supercapacitor electrodes. J. Power Sources 381, 116–126 (2018)ADSCrossRefGoogle Scholar
  2. 2.
    X.T. Yang. H. Xia. Z.G. Liang. H.Y. Li. H.W. Yu. Monodisperse carbon nanospheres with hierarchical porous structure as electrode material for supercapacitor. Nanoscale Res. Lett. 12, 550–554 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    X.T. Yang. Z.G. Liang. Y.J. Yuan. J.L. Yang. H. Xia. Preparation and electrochemical performance of porous carbon nanosphere. ACTA Phys. Sin. 66(4), 048101 (2017)Google Scholar
  4. 4.
    H. Guo. Z. Liu. H.Y. Li. H. Wu. C.J. Zhang. J.L. Yang. X.H. Chen. Active carbon electrode fabricated via large-scale coating-transfer process for high-performance supercapacitor. Appl. Phys. A 123, 467 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    S.C. Sekhar. G. Nagaraju. J.S. Yu. Conductive siler nanowires-fenced carbon cloth fibers-supported layered double hydroxide nanosheets as a flexible and binder-free electrode for high-performance asymmetric supercapacitors. Nano Energy 36, 58–67 (2017)CrossRefGoogle Scholar
  6. 6.
    L.M. Sun. X.H. Wang. K. Zhang. J.P. Zou. Q. Zhang. Metal-free SWNT/carbon/MnO2 hybrid electrode for high performance coplanar micro-supercapacitors. Nano Energy 22, 11–18 (2016)CrossRefGoogle Scholar
  7. 7.
    X.T. Zhang. Z.T. Zhang. H.Y. Pan. W. Salman. Y.P. Yuan. Y.J. Liu. A portable high-efficiency electromagnetic energy harvesting system using supercapacitors for renewable energy applications in railroads. Energy Convers. Manag. 118, 287–294 (2016)CrossRefGoogle Scholar
  8. 8.
    G.M. Wang. H.Y. Wang. X.H. Lu. Y.C. Ling. M.H. Yu. T. Zhai. Y.X. Tong. Y. Li. Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability. Adv. Mater. 26(17), 2676–2682 (2014)CrossRefGoogle Scholar
  9. 9.
    Y.W. Shi. X.W. Zhang. G.Z. Liu. Activated carbons derived from hydrothermally carbonized sucrose: remarkable adsorbents for adsorptive desulfurization. ACS Sustain. Chem. Eng. 3(9), 2237–2246 (2015)CrossRefGoogle Scholar
  10. 10.
    K.Y. Shi. M. Ren. L. Zhitomirsky. Activated carbon-coated carbon nanotubes for energy storage in supercapacitors and capacitive water purification. ACS Sustain. Chem. Eng. 2(5), 1289–1298 (2014)CrossRefGoogle Scholar
  11. 11.
    R.B. Rakhi. W. Chen. M.N. Hedhili. D. Cha. H.N. Alshareef. Enhanced rate performance of mesoporous Co3O4 nanosheet supercapacitor electrodes by hydrous RuO2 nanoparticle decoration. ACS Appl. Mater. Interfaces 6(6), 4196–4206 (2014)CrossRefGoogle Scholar
  12. 12.
    X. Pan. G.F. Ren. M.F. Hoque. S. Bayne. K. Zhu. Z.Y. Fan. Fast supercapacitors based on graphene-bridged V2O3/VOx core-shell nanostructure electrodes with a power density of 1 MW kg−1. Adv. Mater. Interfaces 1(9), 1400398 (2014)CrossRefGoogle Scholar
  13. 13.
    N. Choudhary. C. Li. J.L. Moore. N. Nagaiah. L. Zhai. Y. Jung. J. Thomas. Asymmetric supercapacitor electrodes and devices. Adv. Mater. 29, 1605336 (2017)CrossRefGoogle Scholar
  14. 14.
    M.H. Yu. D. Lin. H.B. Feng. Y.X. Zeng. Y.X. Tong. X.H. Lu. Boosting the energy density of carbon-based aqueous supercapacitors by optimizing the surface charge. Angew. Chem. 129, 5546–5551 (2017)CrossRefGoogle Scholar
  15. 15.
    M. Cakici. K.R. Reddy. A.M. Fernando. Advanced electrochemical energy storage supercapacitors based on the flexible carbon fiber fabric-coated with uniform coral-like MnO2. Chem. Eng. J. 309, 151–158 (2017)CrossRefGoogle Scholar
  16. 16.
    A.H. Khan. S. Ghosh. B. Pradhan. A. Dului. L.K. Shrestha. S. Acharya. K. Ariga. Two-dimensional (2D) nanomaterials towards electrochemical nanoarchitectonics in energy-related applications. Bull. Chem. Soc. Jpn. 90, 627–648 (2017)CrossRefGoogle Scholar
  17. 17.
    C. Sengottaiyan. R. Jayavel. P. Bairi. R.G. Shrestha. K. Ariga. L.K. Shrestha. Cobalt oxide/reduced graphene oxide composite with enhanced electrochemical supercapacitance performance. Bull. Chem. Soc. Jpn. 90, 955–962 (2017)CrossRefGoogle Scholar
  18. 18.
    P. Simon. Y. Gogotsi. Material for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    Q. Lu. M.W. Lattanzi. Y.P. Chen. X.M. Kou. W.F. Li. X Fan. K.M. Unruh. J.G. Chen. J.Q. Xiao. Supercapacitor electrodes with high-energy and power densities prepared from monolithic NiO/Ni nanocomposites. Angew. Chem.123, 6979–6982 (2011)CrossRefGoogle Scholar
  20. 20.
    G.H. Hahm. A. L. M. Reddy. D.P. Cole. M. Rivera. J.A. Vento. J. Nam. H.Y. Jung. Y.L. Kim. N.T. Narayanan. D.P. Hashim. C. Galande. Y.J. Jung. M. Bundy. S. Karna. P.M. Ajayan. R. Vajtai. Carbon nanotube-nanocup hybrid structures for high power supercapacitor applications. Nano Lett. 12(11), 5616–5621 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    Z.J. Fan. J. Yan. T. Wei. L.J. Zhi. G.Q. Ning. T.Y. Li. F. Wei. Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv. Funct. Mater. 21(12), 2366–2375 (2011)CrossRefGoogle Scholar
  22. 22.
    D.S. Leem, A. Edwards, M. Faist, J. Nelson, D.D.C. Bradley, J.C.D. Mello, Efficient organic solar cells with solution-processed silver nanowire electrodes. Adv. Mater. 23, 4371–4375 (2011)CrossRefGoogle Scholar
  23. 23.
    S. Coskun, E.S. Ates, H.E. Unalan, Optimization of silver nanowire networks for polymer light emitting diode electrodes. Nanotechnology 24, 125202 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    F. Beguin. V. Presser. A. Balducci. E. Frackowiak. Carbons and electrolytes for advanced supercapacitors. Adv. Mater. 26(14), 2219–2251 (2014)CrossRefGoogle Scholar
  25. 25.
    L. Kang. H. Chen. Z.J. Yang. Y.B. Yuan. H Huang. B.C. Yang. Y.L. Gao. C.H. Zhou. Seesaw-like polarized transmission behavior of silver nanowire arrays aligned by off-center spin-coating. J. Appl. Phys. 123, 205110 (2018)ADSCrossRefGoogle Scholar
  26. 26.
    S. He. X. Zhang. B.C. Yang. X.M. Xu. H. Chen. C.H. Zhou. Low-temperature-cure highly conductive composite of Ag nanowires and polyvinyl alcohol. Chin. Phys. B 26, 078103–078107 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    X.M. Xu. S. He. C.H. Zhou. X.D. Xia. L. Xu. H. Chen. B.C. Yang. J.L. Yang. Largely-increased length of silver nanowires by controlled oxidative etching process in solvothermal reaction and the application in highly transparent and conductive networks. RSC Adv. 6, 105895–105902 (2016)CrossRefGoogle Scholar
  28. 28.
    B. Liu. M.Q. Long. M.Q. Cai. J.L. Yang. Interface engineering of CsPbI3-black phosphorus van der waals heterostructure. Appl. Phys. Lett. 112, 043901 (2018)ADSCrossRefGoogle Scholar
  29. 29.
    X.D. Xia. B.C. Yang. X. Zhang. C.H. Zhou. Enhanced film conductance of silver nanowire-based flexible transparent and conductive networks by bending. Mater. Res. Express 2, 075009 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    J. Zhi. W. Zhao. X.Y. Liu. A.R. Chen. Z.Q. Liu. F.Q. Huang. Highly conductive ordered mesoporous carbon besed electrodes decorated by 3D graphene and 1D silver nanowire for flexible supercapacitor. Adv. Funct. Mater. 24, 2013–2019 (2013)CrossRefGoogle Scholar
  31. 31.
    P. Kossyrev. carbon black supercapacitors employing thin electrodes. J. Power Sources 201, 347–352 (2012)CrossRefGoogle Scholar
  32. 32.
    F. Gao. J.Y. Qu. Z.B. Zhao. Z.Y. Wang. J.S. Qiu. Nitrogen-doped actived carbon derived from prawn shells for high-performance supercapacitors. Electrochimica Acta 190, 1134–1141 (2016)CrossRefGoogle Scholar
  33. 33.
    G. Hasegawa. M. Aoki. K. Kananori. K. Nakanishi. T. Hanada. K. Tadanaga. Monolithic electrode for electric double-layer capacitors based on macro/meso/microporous S-containing activated carbon with high surface area. J. Mater. Chem. 21, 2060–2063 (2011)CrossRefGoogle Scholar
  34. 34.
    R. Mysyk. E.R. Pinero. M. Anouti. D. Lemordant. F. Beguin. Pseudo-capacitance of nanoporous carbons in pyrrolidinium-based protic ionic liquids. Electrochem. Commun. 12, 414–417 (2010)CrossRefGoogle Scholar
  35. 35.
    R.H. Liu. E.H. Liu. R. Ding. K. Liu. Y. Teng. Z.Y. Luo. Z.P. Li. T.T. Hu. T.T. Liu. Facile in-situ redox synthesis of hierarchical porous actived carbon@MnO2 core/shell nanocoposite for supercapacitors. Ceram. Int. 41,12734–12741 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hengyue Li
    • 1
  • Hui Guo
    • 1
    • 2
  • Keqing Huang
    • 1
  • Biao Liu
    • 1
  • Chujun Zhang
    • 1
  • Xiaohua Chen
    • 2
  • Xiaowen Xu
    • 1
    Email author
  • Junliang Yang
    • 1
    Email author
  1. 1.Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and ElectronicsCentral South UniversityChangshaChina
  2. 2.College of Materials and EngineeringHunan UniversityChangshaChina

Personalised recommendations