Advertisement

Applied Physics A

, 124:768 | Cite as

Tailoring structural, surface, optical, and dielectric properties of CuO nanosheets for applications in high-frequency devices

  • Muhammad Sajid
  • Muhammad Imran
  • Salahuddin
  • Javed Iqbal
Article
  • 87 Downloads

Abstract

In the present study, a simple chemical method for the preparation of CuO nanostructures by varying Mn-doping concentration has been reported. It also provides an extensive investigation of structural, surface, and optical and dielectric properties of Mn-doped CuO nanostructures. Single-phase monoclinic crystal structure of CuO formation for all samples with average crystallite size of 20–24 nm has been observed from X-ray diffraction (XRD) results. A morphological transformation from nanosheets to spherical nanoparticles have been found with Mn doping as depicted by scanning electron microscopy (SEM) images. The successful doping of Mn ions into CuO crystal has also been supported by Fourier transform infrared spectroscopy (FTIR) results. The widening of the optical bandgap of CuO nanostructures has been observed with increasing Mn doping which may be attributed to band-filling effects and exchange interactions. Interestingly, the values of dielectric constant of CuO nanostructures have been observed to increase systematically with Mn doping making it potential material for high-frequency device applications.

References

  1. 1.
    S. Anandan, S. Yang, Emergent methods to synthesize and characterize semiconductor CuO nanoparticles with various morphologies-an overview. J. Exp. Nanosci. 2, 23–56 (2007)CrossRefGoogle Scholar
  2. 2.
    M.K. Song, S. Park, F.M. Alamgir, J. Cho, M. Liu, Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives. Mater. Sci. Eng. R Rep. 72, 203–252 (2011)CrossRefGoogle Scholar
  3. 3.
    K. Han, M. Tao, Electrochemically deposited p–n homojunction cuprous oxide solar cells. Sol Energy Mater. Sol Cells 93, 153–157 (2009)CrossRefGoogle Scholar
  4. 4.
    S. Steinhauer, E. Brunet, T. Maier, G. Mutinati, A. Kock, O. Freudenberg, C. Gspan, W. Grogger, A. Neuhold, R. Resel, Gas sensing properties of novel CuO nanowire devices. Sens. Actuators B Chem. 187, 50–57 (2013)CrossRefGoogle Scholar
  5. 5.
    Y. Tokura, H. Takagi, S. Uchida, A superconducting copper oxide compound with electrons as the charge carriers. Nature 337, 345–347 (1989)ADSCrossRefGoogle Scholar
  6. 6.
    G. Ren, D. Hu, E.W. Cheng, M.A. Vargas-Reus, P. Reip, R.P. Allaker, Characterisation of copper oxide nanoparticles for antimicrobial applications. Int. J. Antimicrob. Agents 33, 587–590 (2009)CrossRefGoogle Scholar
  7. 7.
    C.H. Han, Z.Y. Li, J.Y. Shen, Photocatalytic degradation of dodecyl-benzenesulfonate over TiO2–Cu2O under visible irradiation. J. Hazard. Mater. 168, 15–219 (2009)CrossRefGoogle Scholar
  8. 8.
    H. Ahmad, S.K. Kamarudin, L.J. Minggu, M. Kassim, Hydrogen from photo–catalytic water splitting process: a review. Renew. Sustain. Energy Rev. 43, 599–610 (2015)CrossRefGoogle Scholar
  9. 9.
    B. Yan, Y. Wang, T. Jiang, X. Wu, Synthesis and enhanced photocatalytic property of La-doped CuO nanostructures by electrodeposition method. J. Mater. Sci. Mater. Electron. 27, 5389–5394 (2016)CrossRefGoogle Scholar
  10. 10.
    W.T. Yao, S.H. Yu, Y. Zhou, J. Jiang, Q.S. Wu, L. Zhang, J. Jiang, Formation of uniform CuO nanorods by spontaneous aggregation: selective synthesis of CuO, Cu2O, and Cu nanoparticles by a solid–liquid phase arc discharge process. J. Phys. Chem. B 109, 14011 (2005)CrossRefGoogle Scholar
  11. 11.
    Y.K. Su, C.M. Shen, H.T. Yang, H.L. Li, H.J. Gao, Controlled synthesis of highly ordered CuO nanowire arrays by template-based sol-gel route. Trans. Nonferrous Met. Soc. China 17, 783 (2007)CrossRefGoogle Scholar
  12. 12.
    J.T. Chen, F. Zhang, J. Wang, G.A. Zhang, B.B. Miao, X.Y. Fan, D. Yan, P.X. Yan, CuO nanowires synthesized by thermal oxidation route. J. Alloys Compd. 454, 268 (2008)CrossRefGoogle Scholar
  13. 13.
    Y. Liu, Y. Chu, M. Li, L. Li, L. Dong, In situ synthesis and assembly of copper oxide nanocrystals on copper foil via amild hydrothermal process. J. Mater. Chem. 16, 192 (2006)CrossRefGoogle Scholar
  14. 14.
    M. Vaseem, A. Umar, Y.B. Hahn, D.H. Kim, K.S. Lee, J.S. Jang, J.S. Lee, Flower-shaped CuO nanostructures: Structural, photocatalytic and XANES studies. Catal. Commun. 10, 11–16 (2008)CrossRefGoogle Scholar
  15. 15.
    J. Zhu, H. Bi, Y. Wang, X. Wang, X. Yang, L. Lu, Synthesis of flower-like CuO nanostructures via a simple hydrolysis route. Mater. Lett. 61, 5236–5238 (2007)CrossRefGoogle Scholar
  16. 16.
    C.H. Kuo, M.H. Huang, Facile synthesis of Cu2O nanocrystals with systematic shape evolution from cubic to octahedral structures. J. Phys. Chem. C 112, 183 (2008)CrossRefGoogle Scholar
  17. 17.
    S. Sonia, I.J. Annsi, P.S. Kumar, D. Mangalaraj, C. Viswanathan, N. Ponpandian, Hydrothermal synthesis of novel Zn doped CuO nanoflowers as an efficient photo-degradation material for textile dyes. Mater. Lett. 144, 127–130 (2015)CrossRefGoogle Scholar
  18. 18.
    A. Yildiz, S. Horzum, N. Serin, T. Serin, Hopping conduction in In-doped CuO thin films. Appl. Surf. Sci. 318, 105–107 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    W.L. Gao, S.H. Yang, S.G. Yang, L.Y. Lv, Y.W. Du, Synthesis and magnetic properties of Mn doped CuO. Phys. Lett. A 375, 180–182 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    P. Chand, A. Gaur, A. Kumar, U.K. Gaur, Structural and optical study of Li doped CuO thin films on Si (100) substrate deposited by pulsed laser deposition. Appl. Surf. Sci. 307, 280–286 (2014)CrossRefGoogle Scholar
  21. 21.
    N.M. Basith, J.J. Vijaya, L.J. Kennedy, M. Bououdina, Structural, optical and room-temperature ferromagnetic properties of Fe doped CuO nanostructures. Phys. E Low Dimens. Syst. Nanostruct. 53, 193–199 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    N.M. Basith, J.J. Vijaya, L.J. Kennedy, M. Bououdina, Structural, morphological, optical, and magnetic properties of Ni-doped CuO nanostructures prepared by a rapid microwave combustion method. Mater. Sci. Semicond. Process. 17, 110–118 (2014)CrossRefGoogle Scholar
  23. 23.
    S. Ravi, F. Winfred, Shashikanth, Ferromagnetism in Mn doped copper oxide nanoflake like structures with high Neel temperature. Mater. Lett. 141, 132–134 (2015)CrossRefGoogle Scholar
  24. 24.
    T. Jiang, J. Kong, Y. Wang, D. Meng, D. Wang, M. Yu, Optical and Photocatalytic properties of Mn-doped CuO nanosheets prepared by hydrothermal method. Cryst. Res. Technol. 51, 58–64 (2016)CrossRefGoogle Scholar
  25. 25.
    W. Gao, S. Yang, S. Yang, L. Lv, Y. Du, Synthesis and magnetic properties of Mn doped CuO nanowires. Phys. Lett. A 375, 180–182 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    A. Chamola, H. Singh, U.C. Naithani, Study of Pb(Zr0.65Ti0.35)O3 PZT (65/35) doping on structural, dielectric and conductivity properties of BaTiO3 (BT) ceramics. Adv. Mat. Lett 2(2), 148–152 (2011)CrossRefGoogle Scholar
  27. 27.
    Y.X. Zhang, M. Huang, F. Li, Z.Q. Wen, Controlled synthesis of hierarchical CuO nanostructures for electrochemical capacitor electrodes. Int. J. Electrochem. Sci. 8, 8645–8661 (2013)Google Scholar
  28. 28.
    N. Bouazizi, R. Bargougui, A. Oueslati, R. Benslama, Effect of synthesis time on structural, optical and electrical properties of CuO nanoparticles synthesized by reflux condensation method. Adv. Mater. Lett. 6, 158–164 (2015)CrossRefGoogle Scholar
  29. 29.
    K. Borgohain, J.B. Singh, M.V.R. Rao, T. Shripathi, S. Mahamuni, Quantum size effects in CuO nanoparticles. Phys. Rev. B 61, 11093–11096 (2000)ADSCrossRefGoogle Scholar
  30. 30.
    G.J. Exarhos, Characterization of Optical Materials(Materials Characterization). Butterworth-Heinemann Ltd. (1993). ISBN 10: 0750692987. ISBN 13: 9780750692984Google Scholar
  31. 31.
    D. Sivalingam, J.B. Gopalakrishnan, J.B.B. Rayappan, Structural, morphological, electrical and vapour sensing properties of Mn doped nanostructured ZnO thin films. Sens. Actuators B 166, 624–631 (2012)CrossRefGoogle Scholar
  32. 32.
    B.E. Sernelius, K.F. Berggren, Z.C. Jin, I. Hamberg, C.G. Granqvist, Band-gap tailoring of ZnO by means of heavy Al doping. Phys. Rev. B 37, 10244 (1988)ADSCrossRefGoogle Scholar
  33. 33.
    Y. Gülen, F. Bayansal, B. Şahin, H.A. Cetinkara, H.S. Güder, Fabrication and characterization of Mn-doped CuO thin films by the SILAR method. Ceram. Int. 39, 6475–6480 (2013)CrossRefGoogle Scholar
  34. 34.
    T. Prodromakis, C. Papavassiliou, Engineering the Maxwell–Wagner polarization effect. Appl. Surf. Sci. 255, 6989 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73, 348 (1993)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of MaterialsBeijing Institute of TechnologyBeijingPeople’s Republic of China
  2. 2.Laboratory of Nanoscience and Technology (LNT)International Islamic University IslamabadIslamabadPakistan
  3. 3.Department of PhysicsGovt. College University FaisalabadFaisalabadPakistan
  4. 4.State Key Laboratory of Silicon Materials, School of Materials Science and EngineeringZhejiang UniversityHangzhouChina
  5. 5.Department of PhysicsQuaid Azam University IslamabadIslamabadPakistan

Personalised recommendations