Advertisement

Applied Physics A

, 124:755 | Cite as

Photo-induced non-linear optical studies on gallium alkali borate glasses doped with TiO2

  • A. Prabhakar ReddyEmail author
  • M. Chandra Shekhar Reddy
  • A. Siva Sesha Reddy
  • J. Ashok
  • N. Veeraiah
  • B. Appa Rao
Article
  • 55 Downloads

Abstract

30 Li2O − (5 − x) Ga2O3 − 65 B2O3 glasses containing small concentrations of TiO2 varying from 0 to 1.0 mol% are prepared by the melt quench technique. The X-ray diffraction results showed the amorphous nature of the sample. Various physical parameters like density, molar volume, Ti4+ ion concentration, molar refraction, polarizability, polaron radius, etc., are evaluated. The differential scanning calorimetry traces of all the samples are recorded and displayed inflection points due to glass transition Tg in the temperature region 446–460 °C. Fourier transform infrared spectra, optical absorption spectra and photoluminescence spectra of all the samples are recorded at room temperature and analyzed. Optical absorption spectra of all these glasses exhibited two clearly resolved absorption due to the excitation of Ti3+ ions. At room temperature, the recorded electron paramagnetic resonance (EPR) spectrum of present glasses exhibited a resonance signal at g ~ 1.911 referred to tetragonaly compressed octahedral sites of Ti3+ ions. Laser-induced second-harmonic generation (SHG) studies are carried out for all the glasses. These results have signified that the glass doped with 0.8 mol% of TiO2 exhibited the highest intensity of SHG signal. These results are further analyzed using the other spectroscopic studies and reasons for the highest SHG efficiency of the glass GT8 are identified and reported.

Notes

Acknowledgements

The authors would prefer to appreciatively and sincerely give thanks to each academic endeavor Prof. I. V Kytyk, Institute of Optoelectronics and Measuring Systems, Electrical Engineering Department, Czestochowa University of Technology, Aleja Armii Krajowej17/19, Czestochowa, Poland, and M.Piasecki, Institute of Physics, Jan Dlugosz University, ul. ArmiiKrajowej 13/15, 42-201 Czestochowa, Poland, for providing experimental facilities for second-harmonic generation measurements. Certainly, these results helped me a lot to investigate non-linear optical studies and the way that it is associated with my present work. With their helpful discussions and continuous cooperation, we brought this paper successively in a perfect form.

References

  1. 1.
    E.M. Vogel, S.G. Kosinski, D.M. Krol, J.L. Jackel, S.R. Friberg, M.K. Oliver, J.D. Powers, J. Non Cryst. Solids 107, 244 (1989)ADSCrossRefGoogle Scholar
  2. 2.
    F. Branda, A. Costantini, G. Luciani, B. Silvestri, Phys. Chem. Glasses 45, 95 (2004)Google Scholar
  3. 3.
    K.A. Murphy, J.E. Shelby, Phys. Chem. Glasses 44, 325 (2003)Google Scholar
  4. 4.
    I.V. Kityk, J. Isylak, J.D. Kucharski, Dorosz, J. Non Cryst. Solids 285, 297 (2002)Google Scholar
  5. 5.
    K.J. Plucinski, W. Gruhn, J. Isylak Ebothe, J. Opt. Mater. 22, 13 (2003)CrossRefGoogle Scholar
  6. 6.
    S.V.G.V.A. Prasad, N. Veeraiah, Phys. Stat. Solidi A 202, 812 (2005)CrossRefGoogle Scholar
  7. 7.
    P. Subhalakshmi, N. Veeraiah, Mater. Lett. 56, 880 (2002)CrossRefGoogle Scholar
  8. 8.
    W. Vogel, Chemistry of Glass (The American Ceramic Society, Inc., Westerville, 1985)Google Scholar
  9. 9.
    T. Hashimoto, H. Uchida, I. Takagi, H. Nasu, K. Kamiya, J. Non Cryst. Solids 253, 30 (1999)ADSCrossRefGoogle Scholar
  10. 10.
    B.P. Antonyuk, N.N.N. Novikona, N.V. Didenko, O.A. Aktsipetrov, Phys. Lett. A 287, 161 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    M. Sheik-Bahae, D.C. Hutchings, D.J. Hagan, E.W. Van Stryland, IEEE J. Quantum Electron. 27, 1296 (1991)ADSCrossRefGoogle Scholar
  12. 12.
    B.V. Raghavaiah, C. Laxmikanth, N. Veeraiah, Opt. Commun. 235, 341 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    M.C.S. Reddy, B.A. Rao, M.G. Brik, A.P. Reddy, P.R. Rao, C.K. Jayashankar, N. Veeraiah, Appl. Phys. B 108, 455 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    M.C.S. Reddy, A.P. Reddy, K.K. Goud, B.A. Rao, Mater. Today Proc. 3, 3970–3975 (2016)CrossRefGoogle Scholar
  15. 15.
    A.P. Reddy, M.C.S. Reddy, B.A. Rao, N. Veeraiah, Int. J. Emerg. Technol. Adv. Eng. 7(10), 125–136 (2017)Google Scholar
  16. 16.
    I.V. Kityk, B. Marciniak, B. Sahraoui, Photoinduced electrooptics in pyrene molecular crystallites incorporated within polymer matrices. Cryst. Res.Technol 37, 477–484 (2002)CrossRefGoogle Scholar
  17. 17.
    N.N. Rao, I.V. Kityk, V.R. Kumar, C.S. Rao, M. Piasecki, P. Bragiel, N. Veeraiah, Ceram. Int. 38, 2551–2562 (2012)CrossRefGoogle Scholar
  18. 18.
    M.J. Weber, R. Cropp, J. Non Cryst. Solids 4, 137 (1981)ADSCrossRefGoogle Scholar
  19. 19.
    H.A. Lorentz, Ann. Phys 9, 641(1880)CrossRefGoogle Scholar
  20. 20.
    L. Lorentz, Wiedm. Ann 11, 70 (1881)Google Scholar
  21. 21.
    V. Dimitrov, T. Komatsu, J. Univ. Chem. Technol. Metall. 45, 219 (2010)Google Scholar
  22. 22.
    F.A. Khalife, H.A. El Batal, A.A. Zooz, Indian J. Pure Appl. Phys. 36, 314 (1998)Google Scholar
  23. 23.
    M.R. Reddy, S.B. Raju, N. Veeraiah, J. Phys. Chem. Solids 61, 1567 (2000)ADSCrossRefGoogle Scholar
  24. 24.
    H.-F. Wu, C.-C. Lin, P. Shen, J. Non Cryst. Solids 209 (1997) 76ADSCrossRefGoogle Scholar
  25. 25.
    H.L. Rutz, D.E. Day, C.F. Spencer, J. Am. Ceram. Soc. 73, 1788 (1990)CrossRefGoogle Scholar
  26. 26.
    W.H. Hung, C.S. Ray, D.E. Ray, J. Am. Ceram. Soc. 77, 1071 (1994)Google Scholar
  27. 27.
    K.K.M. Goud, C. Ramesh, B.A. Rao, IJERT 1(6), 73–86 (2017)Google Scholar
  28. 28.
    M. Belkhouaja, M. Et-Tabirou, M. Elmoudane, Phase Transit 76, 645 (2003)CrossRefGoogle Scholar
  29. 29.
    G.H. Siegel Jr, Optical absorption of glasses, in Treatise on Material Science and Technology, vol, 12, ed. by M. Tomozawa, R.H. Doremus (Academic Press, New York, 1976), p. 6Google Scholar
  30. 30.
    T. Satyanarayana, I.V. Kityk, K. Ozga, M. Piasecki, P. Bragiel, M.G. Brik, V. Ravi Kumar, A.H. Reshak, N. Veeraiah, J. Alloy. Compd. 482, 283–297 (2009)CrossRefGoogle Scholar
  31. 31.
    S.A. Khan, F.S. Al-Hazmi, S. Al-Heniti, A.S. Faidah, A.A. Al-Ghamdi, Curr. Appl. Phys. 10, 145–152 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    M. Kumar, A. Uniyal, A.P.S. Chauhan, S.P. Singh, Bull. Mater. Sci. 26, 335 (2003)CrossRefGoogle Scholar
  33. 33.
    A.H. Reshak, S. Auluck, I.V. Kityk, Jpn. J. Appl. Phys. 47, 5516 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    T. Fukushimaa, Y. Beninoa, T. Fujiwarab, V. Dimitrovc, T. Komatsua, J. Solid State Chem. 179, 3949–3957 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • A. Prabhakar Reddy
    • 1
    Email author
  • M. Chandra Shekhar Reddy
    • 2
  • A. Siva Sesha Reddy
    • 3
  • J. Ashok
    • 3
  • N. Veeraiah
    • 3
  • B. Appa Rao
    • 1
  1. 1.Department of PhysicsOsmania UniversityHyderabadIndia
  2. 2.Department of PhysicsCMR College of Engineering & TechnologyHyderabadIndia
  3. 3.Department of PhysicsAcharya Nagrjuna UniversityGunturIndia

Personalised recommendations