Advertisement

Applied Physics A

, 124:759 | Cite as

Investigations on structural and optical properties of chalcone dendrimer in Ag@TiO2 core–shell nanoparticles

  • R. Vanathi Vijayalakshmi
  • S. Selvarani
  • P. Praveen KumarEmail author
  • P. Rajakumar
  • K. Ravichandran
Article
  • 71 Downloads

Abstract

The main focus of this research article is to observe the contributions of chalcone dendrimer in Ag@TiO2 core shell nanoparticles. The samples were synthesized by Redox transmetalation method. The structure of the samples in three molar ratio viz.1:1, 1:2, 1:5 (noted as A,B,C) with Poly Vinyl Pyrrolidone (PVP) as stabilizing agent were compared with the sample Ag@TiO2 of 1:2 molar ratio (noted as D) using zeroth generation triazolyl chalcone dendrimer as stabilizing agent. The prepared samples were structurally characterized by XRD and HRTEM analysis. The XRD and SAED analysis exhibited tetragonal body centered crystal structure with dhkl = 1.6 Å, 2.4 Å and 3.4 Å. The lattice parameters were calculated for all the samples and the variations observed were reported. The grain size and dislocation density of the synthesized nanoparticles were calculated using Debye–Scherrer formula. From Williamson–Hall plot, it was identified that the lattice strain was increased in sample D in which chalcone dendrimer acted as stabilizing agent. The structural investigation showed the impact of stabilizing agent on the surface elements. Similarly, the optical characteristics were discussed based on UV-DRS and Photoluminescence studies. Using Kubelka–Munk function, the band gap energy was calculated and the difference observed in the band gap energy due to the impact of stabilizing agents on metal–metaloxide (Ag@TiO2) combination was analysed. The molar absorptivity (ε) was calculated for all the samples using Beer–Lambert’s law and the difference in absorbance on using different stabilizing agent was discussed.

Notes

Acknowledgements

The author thanks Dr.R.Anandhan, Dept. of Organic Chemistry, University of Madras, Chennai for his support to do the entire lab work.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    T. Pradeep A Textbook of Nanoscience and Nanotechnology (McGraw Hill Edn. (India) Pvt. Ltd., Chennai, 2012) (ISBN 1-25-900732-4)Google Scholar
  2. 2.
    T. Pradeep, (2007) Nano: The Essentials (McGraw Hill Edn. (India) Pvt. Ltd., Chennai, 2007)Google Scholar
  3. 3.
    R. Ghosl Chaudhuri, S. Paria, Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 112, 2373–2433 (2012).  https://doi.org/10.1021/cr100449n CrossRefGoogle Scholar
  4. 4.
    R. Scott, A. Datye, R. Crooks, Bimetallic palladium—platinum dendrimer encapsulatedcatalysts. J. Am. Chem. Soc. 125, 3708–3709 (2003).  https://doi.org/10.1021/ja034176n CrossRefGoogle Scholar
  5. 5.
    G.R. Newkome, C.N. Moorefield, F. Vogtle Dendrons and Dendrimers. Concepts, Synthesis and Applications. (Wiley-VCH, Hoboken, 2001).  https://doi.org/10.1002/3527600612 CrossRefGoogle Scholar
  6. 6.
    Y. Niu, L. Yeung, R. Crooks, Size-selective hydrogenation of olefins by dendrimer-encapsulated palladium nanoparticles. J. Am. Chem. Soc. 123, 6840–6846 (2001).  https://doi.org/10.1021/ja0105257 CrossRefGoogle Scholar
  7. 7.
    H.-L. Jiang, Q. Xu, Recent progress in synergistic catalysis over heterometallic nanoparticles. J. Mater. Chem. 21, 13705 (2011).  https://doi.org/10.1039/c1jm12020d CrossRefGoogle Scholar
  8. 8.
    X. Chen, S.S. Samuel, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891–2959 (2007).  https://doi.org/10.1021/cr0500535 CrossRefGoogle Scholar
  9. 9.
    S. Vaidyaa, A. Patrab, A.K. Gangulia, CdS@TiO2 and ZnS@TiO2 core–shell nanocomposites: synthesis and optical properties. Colloids Surf. A Physicochem. Eng. Aspects. 363, 130–134 (2010).  https://doi.org/10.1016/j.colsurfa.2010.04.030 CrossRefGoogle Scholar
  10. 10.
    V. Chhabra, V. Pillai, B.K. Mishra, A. Morrone, D.O. Shah (1995) Synthesis, characterization, and properties of microemulsion-mediated nanophase Ti02 particles. Langmuir 11: 3307–3311.  https://doi.org/10.1021/la00009a007 CrossRefGoogle Scholar
  11. 11.
    D. Mangalaraj, D.N. Devi (2017) Ag/TiO2 (Metal/Metal Oxide) core shell nanoparticles for biological applications. in Springer Proceedings in Physics, 189. https://www.springer.com/in/book/9783319448893. Accessed 5 Apr 2018
  12. 12.
    D. Zhang, X. Song, R. Zhang, M. Zhang, F. Liu (2005) Preparation and characterization of Ag@TiO2 core-shell nanoparticle water-in-oil emulsions. Eur. J. Inorg. Chem. 1643–1648.  https://doi.org/10.1002/ejic.200400811 CrossRefGoogle Scholar
  13. 13.
    W. Lee, M. Kim, J. Choi, J. Park, S.J. Ko, S.J. Oh, J. Cheon (2005) Redox—transmetalation process as a generalized synthetic strategy for core–shell magnetic nanoparticles. J. Am. Chem. Soc. 127, 16090–16097.  https://doi.org/10.1021/ja053659j CrossRefGoogle Scholar
  14. 14.
    R.V. Vijayalakshmi, A. Kannan, P. Praveen Kumar, K. Ravichandran, P. Rajakumar, Effect of stabilizing agents on the conductivity of Co@TiO2core–shell nanoparticles. Nano-Structures&Nano-Objects 16, 258–265 (2018). https://www.sciencedirect.com/science/article/pii/S2352507X18301215. Accessed 2 Aug 2018CrossRefGoogle Scholar
  15. 15.
    R.V. Vijayalakshmi, A. Kannan, P.Praveen Kumar, K. Ravichandrand, P. Rajakumar, The role of glycodendrimer in the structural and optical studies of Co@AgCl core-shell nanoparticles. Mater. Chem. Phys. 221, 356–360 (2019). https://www.sciencedirect.com/science/article/pii/S0254058418307983?dgcid=rss_sd_all. Accessed 27 Sept 2018CrossRefGoogle Scholar
  16. 16.
    R.V. Vijayalakshmi, P. Praveen Kumar, S. Selvarani, R. Rajakumar, K. Ravichandran, Chalcone dendrimer stabilized core-shell nanoparticles – a comparative study on Co@TiO2, Ag@TiO2 and Co@AgCl nanoparticles for antibacterial and antifungal activity. Mater. Res. Express. 4, 105046 (2017). http://iopscience.iop.org/issue/2053-1591/4/10. Accessed 3 Jan 2018ADSCrossRefGoogle Scholar
  17. 17.
    B.D. Cullity. Elements of X-ray Diffraction. (Addison-Wesley Pub. Comp Inc, California, 1956)Google Scholar
  18. 18.
    C. Hammond, (2001) The basics of crystallography and diffraction (Oxford University Press, Oxford, 2001)Google Scholar
  19. 19.
    A.K. Zak, W.H.A. Majid, M.E. Abrishami, R. Yousefi (2011) X-ray analysis of ZnO nanoparticles by Williamson–Hall and size-strain plot methods. Solid State Sci. 13, 251–256. http://repository.um.edu.my/88950/1/solidstatescience2011.pdf. Accessed 12 Dec 2017
  20. 20.
    G.K. Williamson, W.H. Hall, (1953) X-ray line broadening from filed aluminium and wolfram. Acta Metallurgica. https://www.sciencedirect.com/science/article/pii/0001616053900066. Accessed 12 Dec 2017
  21. 21.
    B. Manikandan, S.T. Endo, M.K.R. Kaneko, J. Rita, Properties of sol gel synthesized ZnO nanoparticles. J. Mater. Sci. Mater. Electron. (2018).  https://doi.org/10.1007/s10854-018-8981-8 CrossRefGoogle Scholar
  22. 22.
    P. Bindu, Sabu Thomas, Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J Theor Appl Phys 8, 123–134 (2014).  https://doi.org/10.1007/s40094-014-0141-9 CrossRefGoogle Scholar
  23. 23.
    A.C.J. Wilson, X-ray Optics (UK, London, 1949), https://archive.org/details/X-rayOptics/page/n0
  24. 24.
    V. Kamlesh, K. Chandekar, K. Mohan, Size-strain analysis and elastic properties of CoFe 2 O 4 nanoplatelets by hydrothermal method. J.Mol.Struc. 1154, 418–427 (2018). https://www.researchgate.net/publication/320061875. Accessed 22 June 2018
  25. 25.
    K. Ravichandran, D. Nedumaran, Synthesis and characterization of zinc sulphide nanoparticles using inert gas condensation technique. Int J Mech Eng Mater Sci 4(1), 25–31 (2011)Google Scholar
  26. 26.
    A.E. Morales, E.S. Mora, U. Pal, Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures. Rev. Mexic. De Fisica S53, 18 (2007). https://rmf.smf.mx/pdf/rmf-s/53/5/53_5_18.pdf. Accessed 22 June 2018
  27. 27.
    T. Silfvast William (2004) Laser fundamentals (Cambridge University Press, New Delhi, 2004) ISBN–0-521-83345-0CrossRefGoogle Scholar
  28. 28.
    B.P. Wang, X. Huang, X. Qin, Y. Zhang, D.J. Wei, W.M. Hwan, Ag@AgCl: a highly efficient and stable photocatalyst active under visible light. Angew. Chem. 47, 7931–7933 (2008).  https://doi.org/10.1002/anie.200802483 CrossRefGoogle Scholar
  29. 29.
    S. Glaus, G. Calzaferri, The band structures of the silver halides AgF, AgCl, and AgBr: a comparative study. Photochem. Photobiol. Sci. 2, 398–401 (2003).  https://doi.org/10.1039/b211678b CrossRefGoogle Scholar
  30. 30.
    F. Moser, R.K. Ahrenkiel, S.L. Lyu (1967) Optical absorption and luminescent emission of the I-center in AgCl. Phys. Rev. 161(3):897–892. https://journals.aps.org/pr/issues/161/3. Accessed 18 Aug 2018ADSCrossRefGoogle Scholar
  31. 31.
    M.I. Tunc, H. Bruns, M. Gliemann, Grunzea, P. Koelsch, Bandgap determination and charge separation in Ag@TiO2 core shell nanoparticle films. Surf. Interface Anal. 42, 835–841 (2010).  https://doi.org/10.1002/sia.3558 CrossRefGoogle Scholar
  32. 32.
    J.K. Michael Thomas, (1996) Ultraviolet and visible spectroscopy, (John Wiley and sons) ISBN 978-81-265-1723-7Google Scholar
  33. 33.
    D. Paramelle, A. Sadovoy, S. Gorelik, P. Free, J. Hobleya, D.G. Fernig (2014) A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra Analyst, 139: 4855–4861.  https://doi.org/10.1039/c4an00978a ADSCrossRefGoogle Scholar
  34. 34.
    L.E. Garcia sole, Bass, D. Jaque, (2005) An introduction to the optical spectroscopy solids (John Wiley and sons) ISBN 0-470-868856Google Scholar
  35. 35.
    Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, A. Fujishima, Multicolour photochromism of TiO2 films loaded with silver nanoparticles. Nat. Mater. 2, 29 (2003). https://www.nature.com/articles/nmat796 ADSCrossRefGoogle Scholar
  36. 36.
    X.Z. Li, F.B. Li (2001) Study of Au/Au3+-TiO2 photocatalysts toward visible photooxidation for water and wastewater treatment, Environ. Sci. Technol. 35, 2381.  https://doi.org/10.1021/es001752w ADSCrossRefGoogle Scholar
  37. 37.
    M.I. Litter (1999) Last advances on TiO2—photocatalytic removal of chromium, uranium and arsenic Appl. Catal. B. 2223, 89. https://www.researchgate.net/profile/Marta_Litter/publication/316521226
  38. 38.
    L.Q. Jing, X.J. Sun, B.F. Xin, W.M. Cai, H.G. Fu, The preparation and characterization of La doped TiO2nanoparticles and their photocatalytic activity. J. Solid State Chem. 177, 3375 (2004). https://www.sciencedirect.com/science/article/pii/S0022459604003068. Accessed 18 Aug 2018
  39. 39.
    B.F. Xin, L.Q. Jing, Z.Y. Ren, B.Q. Wang, H.G.Fu (2005) Effects of simultaneously doped and deposited Ag on the photocatalytic activity and surface states of TiO2, J.Phys.Chem.B 109 (2005)2805.  https://doi.org/10.1021/jp0469618 CrossRefGoogle Scholar
  40. 40.
    S. Bagheri, N.M. Julkapli, S. Bee Abd Hamid (2014) Titanium dioxide as a catalyst support in heterogeneous catalysis (Hindawi Publishing Corporation). Sci World J.  https://doi.org/10.1155/2014/727496 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • R. Vanathi Vijayalakshmi
    • 1
  • S. Selvarani
    • 2
  • P. Praveen Kumar
    • 3
    Email author
  • P. Rajakumar
    • 2
  • K. Ravichandran
    • 4
  1. 1.Department of PhysicsQueen Mary’s CollegeChennaiIndia
  2. 2.Department of Organic ChemistryUniversity of MadrasChennaiIndia
  3. 3.Department of PhysicsPresidency CollegeChennaiIndia
  4. 4.Department of Nuclear PhysicsUniversity of MadrasChennaiIndia

Personalised recommendations