Applied Physics A

, 124:749 | Cite as

Effects of wavelength and fluence on the graphene nanosheets produced by pulsed laser ablation

  • Elmira SolatiEmail author
  • Elnaz Vaghri
  • Davoud Dorranian


In this work, graphene nanosheets and carbon nanoparticles were synthesized by nanosecond pulsed laser ablation in liquid nitrogen using Q-switched Nd:YAG laser. The aim is to investigate the wavelength dependence of carbon nanostructures formation mechanisms using fundamental and second harmonic of Nd:YAG laser irradiations at different laser fluence. Carbon nanoparticles and graphene nanosheets fabricated by pulsed laser ablation show the spherical and transparent sheets morphology, respectively, whereas, those due to the fundamental and second harmonic of Nd:YAG laser undergo fragmental shapes. Furthermore, the production rate of carbon nanoparticles produced at 532 nm is noticeably greater than that at 1064 nm wavelength and it can be due to the strong inverse Bremsstrahlung process at IR region. Raman spectra indicate that the graphene nanosheets produced at 532 nm are multilayer while by increasing the laser fluence and wavelength (1064 nm), bilayer graphene nanosheets are formed.


  1. 1.
    J.S. Sekhon, H.K. Malik, S.S. Verma, DDA simulations of noble metal and alloy nanocubes for tunable optical properties in biological imaging and sensing. RSC Advances 3, 15427–15434 (2013)CrossRefGoogle Scholar
  2. 2.
    E. Solati, D. Dorranian, Investigation of the structure and properties of nanoscale grain-size β-tantalum thin films. Mol. Cryst. Liq. Cryst. 571, 67–76 (2013)CrossRefGoogle Scholar
  3. 3.
    J.S. Sekhon, H.K. Malik, S.S. Verma, Tailoring surface plasmon resonance wavelengths and sensoric potential of core–shell metal nanoparticles. Sensor Lett. 11, 512–518 (2013)CrossRefGoogle Scholar
  4. 4.
    F. Han, S. Yang, W. Jing, Z. Jiang, H. Liu, L. Li, A study on near-UV blue photoluminescence in graphene oxide prepared by Langmuir–Blodgett method. Appl. Surf. Sci. 345, 18–23 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    J. Bouclé, N. Herlin-Boime, The benefits of graphene for hybrid perovskite solar cells. Synth. Met. 222, 3–16 (2016)CrossRefGoogle Scholar
  6. 6.
    Q. Li, X. Guo, Y. Zhang, W. Zhang, C. Ge, L. Zhao, X. Wang, H. Zhang, J. Chen, Z. Wang, L. Sun, Porous graphene paper for supercapacitor applications. J. Mater. Sci. Technol. 33, 793–799 (2017)CrossRefGoogle Scholar
  7. 7.
    C.I.L. Justino, A.R. Gomes, A.C. Freitas, A.C. Duarte, T. A. Rocha-Santos, Graphene based sensors and biosensors. TrAC Trends Anal. Chem. 91, 53–66 (2017)CrossRefGoogle Scholar
  8. 8.
    M. Saulnier, C. Trudeau, S.G. Cloutier, S.B. Schougaard, Investigation of CVD multilayered graphene as negative electrode for lithium-ion batteries. Electrochim. Acta. 244, 54–60 (2017)CrossRefGoogle Scholar
  9. 9.
    S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442, 282–286 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    F. Schwierz, Graphene transistors. Nature nanotechnology 5, 487–496 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    G. Eda, G. Fanchini, M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotechnol. 3, 270–274 (2008)CrossRefGoogle Scholar
  12. 12.
    E. Stratakis, G. Eda, H. Yamaguchi, E. Kymakis, C. Fotakis, M. Chhowalla, Free-standing graphene on microstructured silicon vertices for enhanced field emission properties. Nanoscale 4, 3069–3074 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    M.M. Stylianakis, G.D. Spyropoulos, E. Stratakis, E. Kymakis, Solution-processable graphene linked to 3, 5-dinitrobenzoyl as an electron acceptor in organic bulk heterojunction photovoltaic devices. Carbon 50, 5554–5561 (2012)CrossRefGoogle Scholar
  14. 14.
    E. Stratakis, M.M. Stylianakis, E. Koudoumas, E. Kymakis, Plasmonic organic photovoltaic devices with graphene based buffer layers for stability and efficiency enhancement. Nanoscale 5, 4144–4150 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    E. Kymakis, C. Petridis, T.D. Anthopoulos, E. Stratakis, Laser-assisted reduction of graphene oxide for flexible, large-area optoelectronics. IEEE J. Sel. Top. Quantum Electron. 20, 106–115 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    E. Solati, L. Dejam, D. Dorranian, Effect of laser pulse energy and wavelength on the structure, morphology and optical properties of ZnO nanoparticles. Opt. Laser Technol. 58, 26–32 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    E. Solati, D. Dorranian, Effect of temperature on the characteristics of ZnO nanoparticles produced by laser ablation in water. Bull. Mater. Sci. 39, 1677–1684 (2016)CrossRefGoogle Scholar
  18. 18.
    D. Tan, S. Zhou, J. Qiu, N. Khusro, Preparation of functional nanomaterials with femtosecond laser ablation in solution. J. Photochem. Photobiol. C 17, 50–68 (2013)CrossRefGoogle Scholar
  19. 19.
    A. Zamiranvari, E. Solati, D. Dorranian, Effect of CTAB concentration on the properties of graphene nanosheet produced by laser ablation. Opt. Laser Technol. 97, 209–218 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    E. Vaghri, D. Dorranian, M. Ghoranneviss, Effects of CTAB concentration on the quality of graphene oxide nanosheets produced by green laser ablation. Mater. Chem. Phys. 203, 235–242 (2018)CrossRefGoogle Scholar
  21. 21.
    N. Tabatabaie, D. Dorranian, Effect of fluence on carbon nanostructures produced by laser ablation in liquid nitrogen. Appl. Phys. A 122, 558 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    M. Moradi, E. Solati, S. Darvishi, D. Dorranian, Effect of aqueous ablation environment on the characteristics of ZnO nanoparticles produced by laser ablation. J. Cluster Sci. 27, 127–138 (2016)CrossRefGoogle Scholar
  23. 23.
    A. Mehrani, D. Dorranian, E. Solati, Properties of Au/ZnO nanocomposite prepared by laser irradiation of the mixture of individual colloids. J. Cluster Sci. 26, 1743–1754 (2015)CrossRefGoogle Scholar
  24. 24.
    E. Solati, D. Dorranian, Comparison between silver and gold nanoparticles prepared by pulsed laser ablation in distilled water. J. Cluster Sci. 26, 727–742 (2015)CrossRefGoogle Scholar
  25. 25.
    E. Solati, D. Dorranian, Estimation of lattice strain in ZnO nanoparticles produced by laser ablation at different temperatures. J. Appl. Spectrosc. 84, 490–497 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    E. Solati, M. Mashayekh, D. Dorranian, Effects of laser pulse wavelength and laser fluence on the characteristics of silver nanoparticle generated by laser ablation. Appl. Phys. A 112, 689–694 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    D. Dorranian, E. Solati, L. Dejam, Photoluminescence of ZnO nanoparticles generated by laser ablation in deionized water. Appl. Phys. A 109, 307–314 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    P. Aazadfar, E. Solati, D. Dorranian, Properties of Au/Copper oxide nanocomposite prepared by green laser irradiation of the mixture of individual suspensions. Opt. Mater. 78, 388–395 (2018)ADSCrossRefGoogle Scholar
  29. 29.
    R. Fabbro, J. Fournier, P. Ballard, D. Devaux, J. Virmont, Physical study of laser-produced plasma in confined geometry. J. Appl. Phys. 68, 775–784 (1990)ADSCrossRefGoogle Scholar
  30. 30.
    M. Bonelli, A. Miotello, P.M. Ossi, A. Pessi, S. Gialanella, Laser-irradiation-induced structural changes on graphite. Phys. Rev. B 59, 13513–13516 (1999)ADSCrossRefGoogle Scholar
  31. 31.
    J. Hunter, J. Fye, M.F. Jarrold, Annealing C60+: synthesis of fullerenes and large carbon rings. Science 260, 784–786 (1993)ADSCrossRefGoogle Scholar
  32. 32.
    G. Compagnini, M. Sinatra, P. Russo, G.C. Messina, O. Puglisi, S. Scalese, Deposition of few layer graphene nanowalls at the electrodes during electric field-assisted laser ablation of carbon in water. Carbon 50, 2362–2365 (2012)CrossRefGoogle Scholar
  33. 33.
    P. Nikolaev, W. Holmes, E. Sosa, P. Boul, S. Arepalli, L. Yowell, Effect of vaporization temperature on the diameter and chiral angle distributions of single-walled carbon nanotubes. J. Nanosci. Nanotechnol. 10, 3780–3789 (2010)CrossRefGoogle Scholar
  34. 34.
    Q. Wei, J. Sankar, J. Narayan, Structure and properties of novel functional diamond-like carbon coatings produced by laser ablation. Surf. Coat. Technol. 146, 250–257 (2001)CrossRefGoogle Scholar
  35. 35.
    N. Dwivedi, S. Kumar, H.K. Malik, Role of base pressure on the structural and nano-mechanical properties of metal/diamond-like carbon bilayers. Appl. Surf. Sci. 274, 282–287 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    M. Dudek, A. Rosowski, A. Koperkiewicz, J. Grobelny, R. Wach, M. Sharp, P. French, L. Janasz, M. Kozanecki, Carbon nanoparticles fabricated by infrared laser ablation of graphite and polycrystalline diamond targets, Physica Stat. Solidi (a), 214, 1600318 (2017)ADSCrossRefGoogle Scholar
  37. 37.
    Z. S, P. Mortazavi, A. Parvin, Reyhani, Fabrication of graphene based on Q-switched Nd: YAG laser ablation of graphite target in liquid nitrogen. Laser Phys. Lett. 9, 547–552 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    N. Dwivedi, S. Kumar, H.K. Malik, C.M.S. Rauthan, O.S. Panwar, Influence of bonding environment on nano-mechanical properties of nitrogen containing hydrogenated amorphous carbon thin films. Mater. Chem. Phys. 130, 775–785 (2011)CrossRefGoogle Scholar
  39. 39.
    N. Dwivedi, R. McIntosh, C. Dhand, S. Kumar, H.K. Malik, S. Bhattacharyya, Structurally driven enhancement of resonant tunneling and nanomechanical properties in diamond-like carbon superlattices. ACS Appl. Mater. Interface 7, 20726–20735 (2015)CrossRefGoogle Scholar
  40. 40.
    N. Dwivedi, S. Kumar, H.K. Malik, Nanostructured titanium/diamond-like carbon multilayer films: deposition, characterization, and applications, ACS Appl. Mater. Interface, 3, 4268–4278 (2011)CrossRefGoogle Scholar
  41. 41.
    P. Mahdian Asl, D. Dorranian, Effect of liquid medium temperature on the production rate and quality of graphene nanosheets produced by laser ablation. Opt. Quant. Electron. 48, 535 (2016)CrossRefGoogle Scholar
  42. 42.
    E. Solati, D. Dorranian, Nonlinear optical properties of the mixture of ZnO nanoparticles and graphene nanosheets. Appl. Phys. B 122, 1–10 (2016)CrossRefGoogle Scholar
  43. 43.
    M. Savadkoohi, D. Dorranian, E. Solati, Using silicon nanoparticles to modify the surface of graphene nanosheets. Mater. Sci. Semicond. Process. 75, 75–83 (2018)CrossRefGoogle Scholar
  44. 44.
    E. Solati, M. Savadkoohi, D. Dorranian, Nonlinear optical response of graphene/silicon nanocomposites. Opt. Quant. Electron. 50, 268 (2018)CrossRefGoogle Scholar
  45. 45.
    D. Abramov, S. Arakelian, D. Kochuev, S. Makov, V. Prokoshev, K. Khorkov, Interaction of femtosecond laser radiation with carbon materials: exfoliation of graphene structures and synthesis of low-dimensional carbon structures. Nanosyst. Phys. Chem. Math. 7, 220–225 (2016)CrossRefGoogle Scholar
  46. 46.
    S.Z. Mortazavi, P. Parvin, A. Reyhani, A.N. Golikand, S. Mirershadi, Effect of laser wavelength at IR (1064 nm) and UV (193 nm) on the structural formation of palladium nanoparticles in deionized water. J. Phys. Chem. C 115, 5049–5057 (2011)CrossRefGoogle Scholar
  47. 47.
    M. Stafe, A. Marcu, N.N. Puscas, Pulsed laser ablation of solids: basics, theory and applications, 53, Springer, Berlin (2013)Google Scholar
  48. 48.
    L. Fornarini, F. Colao, R. Fantoni, V. Lazic, V. Spizzicchino, Calibration analysis of bronze samples by nanosecond laser induced breakdown spectroscopy: a theoretical and experimental approach. Spectrochimica Acta Part B Atomic Spectrosc. 60, 1186–1201 (2005)ADSCrossRefGoogle Scholar
  49. 49.
    T. Mościcki, J. Hoffman, z Szymański, Modelling of plasma formation during nanosecond laser ablation. Arch. Mech 63, 99–116 (2011)zbMATHGoogle Scholar
  50. 50.
    J. Xiao, p. C.X. Liu, G.W. Wang, Yang, External field-assisted laser ablation in liquid: An efficient strategy for nanocrystal synthesis and nanostructure assembly. Prog. Mater. Sci. 87, 140–220 (2017)CrossRefGoogle Scholar
  51. 51.
    S. Bhandari, M. Deepa, A.G. Joshi, A.P. Saxena, A.K. Srivastava, Revelation of graphene-Au for direct write deposition and characterization. Nanoscale Res. Lett. 6, 424 (2011)ADSCrossRefGoogle Scholar
  52. 52.
    M. Zhou, J. Tang, Q. Cheng, G. Xu, P. Cui, L.C. Qin, Few-layer graphene obtained by electrochemical exfoliation of graphite cathode. Chem. Phys. Lett. 572, 61–65 (2013)ADSCrossRefGoogle Scholar
  53. 53.
    L. Zhang, Y. Xing, N. He, Y. Zhang, Z. Lu, J. Zhang, Z. Zhang, Preparation of graphene quantum dots for bioimaging application. J. Nanosci. Nanotechnol. 12, 2924–2928 (2012)CrossRefGoogle Scholar
  54. 54.
    J.L. Chen, X.P. Yan, A dehydration and stabilizer free approach to production of stable water dispersions of graphene nanosheets. J. Mater. Chem. 20, 4328–4332 (2010)CrossRefGoogle Scholar
  55. 55.
    V. Kumar, V. Singh, S. Umrao, V. Parashar, A.K. Sh Abraham, G. Singh, P.S. Nath, A. Saxena, Srivastava, Facile, rapid and upscaled synthesis of green luminescent functional graphene quantum dots for bioimaging. RSC Adv. 4, 21101–21107 (2014)CrossRefGoogle Scholar
  56. 56.
    H. Ghanbari, R. Sarraf-Mamoory, J. Sabbagh Zadeh, A. Chehrghani, R. Malekfar, Nonlinear optical absorption of carbon nanostructures synthesized by laser ablation of highly oriented pyrolytic graphite in organic solvents. Int. J. Opt. Photonics 7, 113–124 (2013)Google Scholar
  57. 57.
    V. Borjanović, L. Bistričić, I. Pucić, L. Mikac, R. Slunjski, M. Jakšić, G. McGuire, A.T. Stanković, O. Shenderova, Proton-radiation resistance of poly (ethylene terephthalate)–nanodiamond–graphene nanoplatelet nanocomposites. J. Mater. Sci. 51, 1000–1016 (2016)ADSCrossRefGoogle Scholar
  58. 58.
    B. Pan, J. Xiao, J. Li, P. Liu, C. Wang, G. Yang, Carbyne with finite length: The one-dimensional sp carbon. Science Adv. 1, e1500857 (2015)ADSCrossRefGoogle Scholar
  59. 59.
    S.N.A.M. Yazid, I.M. Isa, S.A. Bakar, N. Hashim, Facile, cost effective and green synthesis of graphene in alkaline aqueous solution. Int. J. Electrochem. Sci. 10, 7977–7984 (2015)Google Scholar
  60. 60.
    H. Park, D.A. Reddy, Y. Kim, S. Lee, R. Ma, T.K. Kim, Synthesis of ultra-small Pd nanoparticles deposited on CdS nanorods by pulsed laser ablation in liquid: role of metal nanocrystal size in the photocatalytic hydrogen production. Chem. A Eur. J. 23, 13112–13119 (2017)CrossRefGoogle Scholar
  61. 61.
    L.M. Malard, M.A.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Raman spectroscopy in graphene. Phys. Rep. 473, 51–87 (2009)ADSCrossRefGoogle Scholar
  62. 62.
    Z. Li, Y. Xu, B. Cao, L. Qi, S. He, C. Wang, J. Zhang, J. Wang, K. Xu, Raman spectra investigation of the defects of chemical vapor deposited multilayer graphene and modified by oxygen plasma treatment. Superlattices Microstruct. 99, 125–130 (2016)ADSCrossRefGoogle Scholar
  63. 63.
    J. Jiang, R. Pachter, F. Mehmood, A.E. Islam, B. Maruyama, J.J. Boeckl, A Raman spectroscopy signature for characterizing defective single-layer graphene: defect-induced II(D)/I (D′) intensity ratio by theoretical analysis. Carbon 90, 53–62 (2015)CrossRefGoogle Scholar
  64. 64.
    G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, M. Zdrojek, M. Holdynski, P. Paletko, J. Boguslawski, L. Lipinska, K.M. Abramski, Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser. Opt. Express 20, 19463–19473 (2012)ADSCrossRefGoogle Scholar
  65. 65.
    D. Pan, S. Wang, B. Zhao, M. Wu, H. Zhang, Y. Wang, Z. Jiao, Li storage properties of disordered graphene nanosheets. Chem. Mater. 21, 3136–3142 (2009)CrossRefGoogle Scholar
  66. 66.
    M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cancado, A. Jorio, R. Saito, Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 9, 1276–1290 (2007)CrossRefGoogle Scholar
  67. 67.
    N. Dwivedi, S. Kumar, I. Rawal, H.K. Malik, Influence of consumed power on structural and nano-mechanical properties of nano-structured diamond-like carbon thin films. Appl. Surf. Sci. 300, 141–148 (2014)ADSCrossRefGoogle Scholar
  68. 68.
    N. Dwivedi, S. Kumar, R.K. Tripathi, J.D. Carey, H.K. Malik, M.K. Dalai, Structural and electronic characterization of nanocrystalline diamond like carbon thin films. ACS Appl. Mater. Interfaces 4, 5309–5316 (2012)CrossRefGoogle Scholar
  69. 69.
    N.K. Memon, D.T. Stephen, M. Chhowalla, B.H. Kear, Role of substrate, temperature, and hydrogen on the flame synthesis of graphene films, Proc. Combust. Inst. 34, 2163–2170 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Young Researchers and Elite ClubScience and Research Branch, Islamic Azad UniversityTehranIran
  2. 2.Young Researchers and Elite ClubShahr-e-Qods Branch, Islamic Azad UniversityTehranIran
  3. 3.Laser Lab, Plasma Physics Research CenterScience and Research Branch, Islamic Azad UniversityTehranIran

Personalised recommendations