Advertisement

Applied Physics A

, 124:750 | Cite as

Nanocrystalline iron manganite prepared by sol–gel self-combustion method for sensor applications

  • Liviu Leontie
  • Corneliu DorofteiEmail author
  • Aurelian Carlescu
Article
  • 86 Downloads

Abstract

The nanocrystalline iron manganite was be successfully synthesized, for capacitive humidity sensor application, by sol–gel self-combustion method using polyvinyl alcohol as colloidal medium, followed by heat treatment. The best performances as humidity sensor were found, at working frequency of 100 Hz: a high sensitivity over a wide range of relative humidity, 11–98% RH (the capacity increases by over 40 times); a good linearity of the logC vs. RH characteristics over the whole RH range, for all used frequencies. The sensor exhibits very small hysteresis, lower sensitivity to temperature, keeping linear characteristics and a short response time. The investigated material holds promise for humidity monitoring applications, taking into account the low cost, a wide range of relative humidity and a low-contamination impact.

Notes

Acknowledgements

This work was partially supported by the Project No. 86//04-4-1121-2015/2020, JINR-RO 2018.

References

  1. 1.
    N. Rezlescu, E. Rezlescu, C. Doroftei, P.D. Popa, Study of some Mg-based ferrites as humidity sensors. J. Phys. Conf. Ser. 15, 296–299 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    E. Traversa, Ceramic sensors for humidity detection: the state-of-the-art and future developments. Sens. Actuators B 23, 135–156 (1995)CrossRefGoogle Scholar
  3. 3.
    Y. Wang, S. Park, J.T.W. Yeow, A. Langner, F. Müller, A capacitive humidity sensor based on ordered macroporous silicon with thin film surface coating. Sens. Actuators B 149, 136–142 (2010)CrossRefGoogle Scholar
  4. 4.
    H. Aria, S. Ezeki, Y. Shimizu, O. Shippo, T. Seiyama, Semiconductive humidity sensor of perovskite-type oxides. Anal. Chem. Symp. Ser. Chem. Sens. 17, 393–398 (1983)Google Scholar
  5. 5.
    J. Holc, J. Slunecko, M. Hrovat, Temperature characteristics of electrical properties of (Ba,Sr)TiO3 thick film humidity sensors. Sens. Actuators B 26–27, 99–102 (1995)CrossRefGoogle Scholar
  6. 6.
    Z. Wang, C. Chen, T. Zhang, H. Guo, B. Zou, R. Wang, F. Wu, Humidity sensitive properties of K+-doped nanocrystalline LaCo0.3Fe0.7O3. Sens. Actuators B 126, 678–683 (2007)CrossRefGoogle Scholar
  7. 7.
    C. Doroftei, P.D. Popa, F. Iacomi, Study of the influence of nickel ions substitutes in barium stannates used as humidity resistive sensors. Sens. Actuators A 173, 24–29 (2012)CrossRefGoogle Scholar
  8. 8.
    Z.A. Ansari, T.G. Ko, J.-H. Oh, Humidity sensing behavior of thick films of strontium-doped lead-zirconium-titanate. Surf. Coatings Technol. 179, 182–187 (2004)CrossRefGoogle Scholar
  9. 9.
    Y.C. Yeh, T.Y. Tseng, Analysis of the d.c. and a.c. properties of K2O-doped porous Ba0.5Sr0.5TiO3 ceramic humidity sensor. J. Mater. Sci. 24, 2739–2745 (1989)ADSCrossRefGoogle Scholar
  10. 10.
    S. Ke, H. Huang, H. Fan, H.L.W. Chan, L.M. Zhou, Structural and electric properties of barium strontium titanate based ceramic composite as a humidity sensor. Solid State Ion. 179, 1632–1635 (2008)CrossRefGoogle Scholar
  11. 11.
    J.P. Lucaszewicz, Diode-type humidity sensor using perovskite-type oxides operable at room temperature. Sens. Actuators B 4, 227–232 (1991)CrossRefGoogle Scholar
  12. 12.
    A. Tripathy, S. Pramanik, A. Manna, S. Bhuyan, N.F.A. Shah, Z. Radzi, N.A.A. Osman, Design and development for capacitive humidity sensor applications of lead-free Ca, Mg, Fe, Ti-Oxides-based electro-ceramics with improved sensing properties via physisorption. Sensors 16, 1135–1152 (2016)CrossRefGoogle Scholar
  13. 13.
    S. Upadhyay, P. Kavitha, Lanthanum doped stannate for humidity sensor. Mater. Lett. 61, 1912–1915 (2007)CrossRefGoogle Scholar
  14. 14.
    S. Agarwal, G.L. Sharma, Humidity sensing properties of (Ba, Sr)TiO3 thin films grown by hydrothermal-electrochemical method. Sens. Actuators B 85, 205–211 (2002)CrossRefGoogle Scholar
  15. 15.
    Z. Li, S. Wang, B. Li, X. Xiang, A new method for synthesis of FeMnO3 ceramics and its phase transformation. J. Nano Res. 37, 122–131 (2016)CrossRefGoogle Scholar
  16. 16.
    M. Li, W. Xu, W. Wang, Y. Liu, B. Cui, X. Guo, Facile synthesis of specific FeMnO3 bellow sphere/graphene composites and their superior electrochemical energy storage performances for supercapacitor. J. Power Sources 248, 465–473 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    K. Cao, H. Liu, X. Xu, Y. Wang, L. Jiao, FeMnO3: a high-performance Li-ion battery anode material. Chem. Commun. 52, 11414–11417 (2016)CrossRefGoogle Scholar
  18. 18.
    S. Rayaproln, S.D. Kaushik, Magnetic and magnetocaloric properties of FeMnO3. Ceram. Int. 41, 9567–9571 (2015)CrossRefGoogle Scholar
  19. 19.
    P. Mungse, G. Saravanan, S. Rayalu, N. Labhsetwar, Mixed oxides of iron and manganese as potential low-cost oxygen carriers for chemical looping combustion. Energy Technol. 3, 856–865 (2015)CrossRefGoogle Scholar
  20. 20.
    M.H. Habibi, V. Mosavi, Wet coprecipitation preparation of perovskite-type iron manganite nano powder pure phase using nitrate precursors: structural, opto-electronic, morphological and photocatalytic activity for degradation of Nile blue dye. J. Mater. Sci. Mater. Electron. 28, 10270–10276 (2017)CrossRefGoogle Scholar
  21. 21.
    S.K. Kulshreshtha, S. Sharma, R. Vijayalakshmi, R. Sasikala, CO oxidation over Pd/γ-FeMnO3 catalyst. Indian J. Chem. Technol. 11, 427–433 (2004)Google Scholar
  22. 22.
    M.H. Habibi, V. Mosavi, Urea combustion synthesis of nano-structure bimetallic perovskite FeMnO3 and mixed monometallic iron manganese oxides: effects of preparation parameters on structural, opto-electronic and photocatalytic activity for photo-degradation of Basic Blue 12. J. Mater. Sci. Mater. Electron. 28, 8473–8479 (2017)CrossRefGoogle Scholar
  23. 23.
    C. Doroftei, P.D. Popa, F. Iacomi Selectivity between methanol and ethanol gas of La–Pb–Fe–O perovskite synthesized by novel method. Sens. Actuators A 190, 176–180 (2013)CrossRefGoogle Scholar
  24. 24.
    C. Doroftei, P.D. Popa, F. Iacomi, L. Leontie, The influence of Zn2+ ions on the microstructure, electrical and gas sensing properties of La0.8Pb0.2FeO3 perovskite. Sens. Actuators B 191, 239–245 (2014)CrossRefGoogle Scholar
  25. 25.
    C. Doroftei, L. Leontie, Synthesis and characterization of some nanostructured composite oxides for low temperature catalytic combustion of dilute propane. RSC Adv. 7, 27863–27871 (2017)CrossRefGoogle Scholar
  26. 26.
    N. Rezlescu, P.D. Popa, E. Rezlescu, C. Doroftei, Microstructure characteristics of some polycrystalline oxide compounds prepared by sol–gel-selfcombustion way for gas sensor applications. Rom. J. Phys. 53, 545–555 (2008)Google Scholar
  27. 27.
    C. Doroftei, L. Leontie, A. Popa, The study on nanogranular system manganites La–Pb–Ca–Mn–O which exhibits a large magnetoresistance near room temperature. J. Mater. Sci. Mater. Electron. 28, 12891–12897 (2017)CrossRefGoogle Scholar
  28. 28.
    H. Klung, L. Alexander, X-ray diffraction procedures (Wiley, New York, 1962)Google Scholar
  29. 29.
    B.D. Cullity, R.S. Stock, Elements of X-ray diffraction, 3rd edn. (Prentice Hall, New Jersey, 2001)Google Scholar
  30. 30.
    S. Lowell, J.E. Shields, M.A. Thomas, M. Thommes, Characterization of porous solids and powders: surface area, pore size and density (Kluwer, Dordrecht, 2004)CrossRefGoogle Scholar
  31. 31.
    N. Rezlescu, C. Doroftei, E. Rezlescu, P.D. Popa, Structure and humidity sensitive electrical properties of the Sn4+ and/or Mo6+ substituted Mg ferrite. Sens. Actuators B 115, 589–595 (2006)CrossRefGoogle Scholar
  32. 32.
    D. Seifu, A. Kebede, F.W. Oliver, E. Hoffman, E. Hammond, C. Wynter, A. Aning, L. Takacs, I.-L. Siu, J.C. Walker, G. Tessema, M.S. Seehra, Evidence of ferrimagnetic ordering in FeMnO3 produced by mechanical alloying. J. Mag. Mag. Mater. 212, 178–182 (2000)ADSCrossRefGoogle Scholar
  33. 33.
    N. Rezlescu, E. Rezlescu, P.D. Popa, E. Popovici, C. Doroftei, M. Ignat, A.C. Barbinta, Morphological and structural aspects of some ferrospinel nanopowders for catalyst applications. Dig. J. Nanomater. Biostruct. 7, 1709–1717 (2012)Google Scholar
  34. 34.
    D.V. Ivanov, L.G. Pinaeva, E.M. Sadovskaya, L.A. Isupova, Influence of the mobility of oxygen on the reactivity of La1 – xSrxMnO3 perovskites in methane oxidation. Kinetics Catal. 52, 401–408 (2011)CrossRefGoogle Scholar
  35. 35.
    A. Tripathy, S. Pramanik, J. Cho, J. Santhosh, N.A.A. Osman, Role of morphological structure, doping, and coating of different materials in the sensing characteristics of humidity sensors. Sensors 14, 16343–16422 (2014)CrossRefGoogle Scholar
  36. 36.
    J. Wang, X.H. Wang, X.D. Wang, Study on dielectric properties of humidity sensing nanometer materials. Sens. Actuators B 108, 445–449 (2005)CrossRefGoogle Scholar
  37. 37.
    H. Bi, K. Yin, X. Xie, J. Ji, S. Wan, L. Sun, M. Terrones, M.S. Dresselhaus, Ultrahigh humidity sensitivity of graphene oxide. Sci. Rep. 3, 2714–2720 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    J. Das, S.M. Hossain, S. Chahraborty, Role of parasitic in humidity sensing by porous silicon. Sens. Actuators A 94, 44–52 (2001)CrossRefGoogle Scholar
  39. 39.
    B.C. Yadav, R. Srivastava, C.D. Dwivedi, Synthesis and characterization of ZnO-TiO2 nanocomposite and its application as a humidity sensor. Philos. Mag. 88, 1113–1124 (2008)ADSCrossRefGoogle Scholar
  40. 40.
    Z. Wang, L. Shi, F. Wu, S. Yuan, Y. Zhao, M. Zhang, The sol–gel template synthesis of porous TiO2 for a high performance humidity sensor. Nanotechnology 22, 275502–275509 (2011)ADSCrossRefGoogle Scholar
  41. 41.
    S.J. Gregg, K.S.W. Sing, Adsorption, surface area and porosity, 2nd edn. (Academic Press, New York, 1982)Google Scholar
  42. 42.
    A.W. Adamson, A.P. Gast, Physical chemistry of surfaces, 6th edn. (Wiley-Blackwell, New York, 1997)Google Scholar
  43. 43.
    E. McCafferty, A. Zettlemoyer, Adsorption of water vapour on α-Fe2O3. Discuss. Faraday Soc. 52, 239–254 (1971)CrossRefGoogle Scholar
  44. 44.
    T. Seiyama, N. Yamazoe, H. Arai, Ceramic humidity sensors. Sens. Actuators 4, 85–96 (1983)CrossRefGoogle Scholar
  45. 45.
    N. Agmon, The Grotthuss mechanism. Chem. Phys. Lett. 244, 456–462 (1995)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Integrated Center for Studies in Environmental Science for North-East RegionAlexandru Ioan Cuza University of IasiIasiRomania
  2. 2.Faculty of PhysicsAlexandru Ioan Cuza University of IasiIasiRomania

Personalised recommendations