Applied Physics A

, 124:748 | Cite as

Structure, infra-red, dielectric properties and conduction mechanism of Ti and Cu–Ti co-doped bismuth ferrite (BiFeO3): a comparison study

  • Muhammad Asif RafiqEmail author
  • Qaisar Khushi Muhammad
  • Sameel Nasir
  • Usama Amin
  • Adnan Maqbool
  • Zubair Ahmad


Multiferroic compositions BiFe0.90Ti0.10O3 and BiFe0.885Cu0.015Ti0.1O3 were synthesized by solid-state mixed oxide method. XRD studies confirmed rhombohedral crystal structure for both compositions while a little change in lattice parameters was observed with Cu–Ti co-doping. SEM analysis indicate that with co-doping comparatively smaller grains were evolved in the microstructure. Fourier-transform infrared spectroscopy (FTIR) was conducted to study absorption bands of different phases. High temperature A.C. conductivity (σac) analysis revealed the hopping charge conduction mechanism. Impedance spectroscopy (IS) was employed from room temperature to 230 °C in 100 Hz–1 MHz frequency range to analyze dielectric properties. IS data indicated decline in impedance with increase in temperature and frequency which confirms negative temperature coefficient of resistance (NTCR) behavior. Owing to the resistance–temperature characteristics, these compositions are well suited for thermal sensor applications.



Authors would like to acknowledge Department of Physics and Department of Polymer and Process Engineering, UET Lahore for extending the infrastructural facilities.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    W. Eerenstein, N. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nature, 442, 759–765 (2006)CrossRefADSGoogle Scholar
  2. 2.
    G. Catalan, J.F. Scott, “Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463–2485 (2009)CrossRefGoogle Scholar
  3. 3.
    C. Ederer, N.A. Spaldin, Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys. Rev. B 71, 060401 (2005)CrossRefADSGoogle Scholar
  4. 4.
    H. Béa, M. Bibes, S. Petit, J. Kreisel, A. Barthélémy, Structural distortion and magnetism of BiFeO3 epitaxial thin films: a Raman spectroscopy and neutron diffraction study. Philos. Mag. Lett. 87, 165–174 (2007)CrossRefADSGoogle Scholar
  5. 5.
    Z. Gabbasova, M. Kuz’min, A. Zvezdin, I. Dubenko, V. Murashov, D. Rakov et al., Bi1– xRxFeO3 (R = rare earth): a family of novel magnetoelectrics. Phys. Lett. A 158, 491–498 (1991)CrossRefADSGoogle Scholar
  6. 6.
    S.-T. Zhang, Y. Zhang, M.-H. Lu, C.-L. Du, Y.-F. Chen, Z.-G. Liu et al., Substitution-induced phase transition and enhanced multiferroic properties of Bi1– xLaxFeO3 ceramics. Appl. Phys. Lett. 88, 162901 (2006)CrossRefADSGoogle Scholar
  7. 7.
    D. Wang, W. Goh, M. Ning, C. Ong, Effect of Ba doping on magnetic, ferroelectric, and magnetoelectric properties in mutiferroic BiFeO3 at room temperature. Appl. Phys. Lett. 88, 212907 (2006)CrossRefADSGoogle Scholar
  8. 8.
    A.M. Kadomtseva, A.K. Zvezdin, Y.F. Popov, A.P. Pyatakov, G.P. Vorob’ev, Space-time parity violation and magnetoelectric interactions in antiferromagnets. Jetp Lett. 79, 571–581 (2004)CrossRefADSGoogle Scholar
  9. 9.
    S. Fedulov, P. Ladyzhinskii, I. Pyatigorskaya, Y.N. Venevtsev, Complete phase diagram of the PbTiO3–BiFeO3 system. Soviet Phys. Solid State 6, 375–378 (1964)Google Scholar
  10. 10.
    M.M. Kumar, A. Srinivas, S. Suryanarayana, Structure property relations in BiFeO3/BaTiO3 solid solutions. J. Appl. Phys. 87, 855–862 (2000)CrossRefADSGoogle Scholar
  11. 11.
    K.Y. Yun, M. Noda, M. Okuyama, Prominent ferroelectricity of BiFeO3 thin films prepared by pulsed-laser deposition. Appl. Phys. Lett. 83, 3981–3983 (2003)CrossRefADSGoogle Scholar
  12. 12.
    G. Dong, G. Tan, Y. Luo, W. Liu, H. Ren, A. Xia, Optimization of the multiferroic BiFeO3 thin films by divalent ion (Mn,Ni) co-doping at B-sites. Mater. Lett. 118, 31–33 (2014)CrossRefGoogle Scholar
  13. 13.
    V. Palkar, J. John, R. Pinto, Observation of saturated polarization and dielectric anomaly in magnetoelectric BiFeO3 thin films. Appl. Phys. Lett. 80, 1628–1630 (2002)CrossRefADSGoogle Scholar
  14. 14.
    X. Qi, J. Dho, R. Tomov, M.G. Blamire, J.L. MacManus-Driscoll, Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3. Appl. Phys. Lett. 86, 062903 (2005)CrossRefADSGoogle Scholar
  15. 15.
    J.K. Kim, S.S. Kim, W.-J. Kim, A.S. Bhalla, R. Guo, Enhanced ferroelectric properties of Cr-doped BiFeO3 thin films grown by chemical solution deposition. Appl. Phys. Lett. 88, 132901 (2006)CrossRefADSGoogle Scholar
  16. 16.
    S. Yasui, H. Uchida, H. Nakaki, K. Nishida, H. Funakubo, S. Koda, Analysis for crystal structure of Bi(Fe,Sc)O3 thin films and their electrical properties. Appl. Phys. Lett. 91, 022906 (2007)CrossRefADSGoogle Scholar
  17. 17.
    M. Azuma, H. Kanda, A.A. Belik, Y. Shimakawa, M. Takano, Magnetic and structural properties of BiFe1–xMnxO3. J. Magn. Magn. Mater. 310, 1177–1179 (2007)CrossRefADSGoogle Scholar
  18. 18.
    I. Coondoo, N. Panwar, M.A. Rafiq, V.S. Puli, M.N. Rafiq, R.S. Katiyar, “Structural, dielectric and impedance spectroscopy studies in (Bi0.90R0.10) Fe0.95Sc0.05O3 [R = La,Nd] ceramics”. Ceram. Int. 40, 9895–9902 (2014)CrossRefGoogle Scholar
  19. 19.
    V. Singh, S. Sharma, M. Kumar, R. Kotnala, R. Dwivedi, Structural transition, magnetic and optical properties of Pr and Ti co-doped BiFeO3 ceramics. J. Magn. Magn. Mater. 349, 264–267 (2014)CrossRefADSGoogle Scholar
  20. 20.
    C.-S. Chou, C.-L. Liu, C.-M. Hsiung, R.-Y. Yang, Preparation and characterization of the lead-free piezoelectric ceramic of Bi0.5Na0.5TiO3 doped with CuO. Powder Technol. 210, 212–219 (2011)CrossRefGoogle Scholar
  21. 21.
    A. Kamal, M.A. Rafiq, M.N. Rafiq, M. Usman, M. Waqar, M.S. Anwar, Structural and impedance spectroscopic studies of CuO-doped (K0. 5Na0. 5Nb0. 995Mn0. 005O3) lead-free piezoelectric ceramics. Appl. Phys. A 122, 1037 (2016)CrossRefADSGoogle Scholar
  22. 22.
    Y.-H. Lin, Q. Jiang, Y. Wang, C.-W. Nan, L. Chen, J. Yu, Enhancement of ferromagnetic properties in BiFeO3 polycrystalline ceramic by La doping. Appl. Phys. Lett. 90, 172507 (2007)CrossRefADSGoogle Scholar
  23. 23.
    V. Naik, R. Mahendiran, Magnetic and magnetoelectric studies in pure and cation doped. Solid State Commun. 149, 754–758 (2009)CrossRefADSGoogle Scholar
  24. 24.
    I. Coondoo, N. Panwar, I. Bdikin, V. Puli, R. Katiyar, A. Kholkin, Structural, morphological and piezoresponse studies of Pr and Sc co-substituted BiFeO3 ceramics. J. Phys. D: Appl. Phys. 45, 055302 (2012)CrossRefADSGoogle Scholar
  25. 25.
    R.T. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 32, 751–767 (1976)CrossRefADSGoogle Scholar
  26. 26.
    X. Wang, Y. Lin, X. Ding, J. Jiang, Enhanced visible-light-response photocatalytic activity of bismuth ferrite nanoparticles. J. Alloy. Compd. 509, 6585–6588 (2011)CrossRefGoogle Scholar
  27. 27.
    K. Parida, R. Choudhary, Structural, electrical, optical and magneto-electric characteristics of chemically synthesized CaCu3Ti4O12 dielectric ceramics. Mater. Res. Express 4, 076302 (2017)CrossRefADSGoogle Scholar
  28. 28.
    T. Cottrell, The Strengths of Chemical Bonds, 2nd edn, Butterwoth, London, 1958 Search PubMed;(b) B. deB. Darwent, National Standard Reference Data Series, National Bureau of Standards, no. 31, Washington, 1970 Search PubMed;(c) SW Benson, J. Chem. Educ. 42, 502 (1965)CrossRefGoogle Scholar
  29. 29.
    J. Kerr, Bond dissociation energies by kinetic methods. Chem. Rev. 66, 465–500 (1966)CrossRefGoogle Scholar
  30. 30.
    S. Farhadi, M. Zaidi, Bismuth ferrite (BiFeO3) nanopowder prepared by sucrose-assisted combustion method: a novel and reusable heterogeneous catalyst for acetylation of amines, alcohols and phenols under solvent-free conditions. J. Mol. Catal. A: Chem. 299, 18–25 (2009)CrossRefGoogle Scholar
  31. 31.
    M.A. Rafiq, M. Waqar, T.A. Mirza, A. Farooq, A. Zulfiqar, Effect of Ni2+ substitution on the structural, magnetic, and dielectric properties of barium hexagonal ferrites (BaFe12O19). J. Electron. Mater. 46, 241–246 (2017)CrossRefADSGoogle Scholar
  32. 32.
    S. Agrawal, A. Jawad, S. Ashraf, A. Naqvi, Structural, optical, dielectric and magnetic properties of Cu doped BiFeO3 nanoparticles synthesized by sol gel method. Mater. Focus 3, 60–66 (2014)CrossRefGoogle Scholar
  33. 33.
    T. Carvalho, P. Tavares, Synthesis and thermodynamic stability of multiferroic BiFeO3. Mater. Lett. 62, 3984–3986 (2008)CrossRefGoogle Scholar
  34. 34.
    Y. Hu, L. Fei, Y. Zhang, J. Yuan, Y. Wang, H. Gu, Synthesis of bismuth ferrite nanoparticles via a wet chemical route at low temperature. J. Nanomater. 2011, 27 (2011)CrossRefGoogle Scholar
  35. 35.
    A.K. Jonscher, The ‘universal’dielectric response. nature, 267, 673–679, (1977)CrossRefADSGoogle Scholar
  36. 36.
    M.A. Rafiq, M.E. Costa, A. Tkach, P.M. Vilarinho, Impedance analysis and conduction mechanisms of lead free potassium sodium niobate (KNN) single crystals and polycrystals: a comparison study. Cryst. Growth Des. 15, 1289–1294 (2015)CrossRefGoogle Scholar
  37. 37.
    M.A. Rafiq, M. Waqar, Q.K. Muhammad, M. Waleed, M. Saleem, M.S. Anwar, Conduction mechanism and magnetic behavior of Cu doped barium hexaferrite ceramics. J. Mater. Sci.: Mater. Electron. 29, 5134–5142 (2018)Google Scholar
  38. 38.
    O. Raymond, R. Font, N. Suárez-Almodovar, J. Portelles, J. Siqueiros, Frequency-temperature response of ferroelectromagnetic Pb(Fe1∕ 2Nb1∕ 2)O3 ceramics obtained by different precursors. Part I. Structural and thermo-electrical characterization. J. Appl. Phys. 97, 084107 (2005)CrossRefADSGoogle Scholar
  39. 39.
    A. Peláiz-Barranco, J. Guerra, R. Lopez-Noda, E. Araujo, Ionized oxygen vacancy-related electrical conductivity in (Pb1–xLax)(Zr0. 90Ti0. 10)1–x/4 O3 ceramics. J. Phys. D: Appl. Phys. 41, 215503 (2008)CrossRefADSGoogle Scholar
  40. 40.
    Q.K. Muhammad, M. Waqar, M.A. Rafiq, M.N. Rafiq, M. Usman, M.S. Anwar, Structural, dielectric, and impedance study of ZnO-doped barium zirconium titanate (BZT) ceramics. J. Mater. Sci. 51, 10048–10058 (2016)CrossRefADSGoogle Scholar
  41. 41.
    J.R. Macdonald, E. Barsoukov, Impedance spectroscopy: theory, experiment, and applications. History. 1, 1–13 (2005)Google Scholar
  42. 42.
    M.A. Rafiq, M.T. Khan, Q.K. Muhammad, M. Waqar, F. Ahmed, Impedance analysis and conduction mechanism of Ba doped Mn1. 75Ni0. 7Co0. 5– xCu0. 05O4 NTC thermistors. Appl. Phys. A 123, 589 (2017)CrossRefADSGoogle Scholar
  43. 43.
    M.A. Rafiq, M.N. Rafiq, K.V. Saravanan, Dielectric and impedance spectroscopic studies of lead-free barium-calcium-zirconium-titanium oxide ceramics. Ceram. Int. 41, 11436–11444 (2015)CrossRefGoogle Scholar
  44. 44.
    H. Singh, A. Kumar, K. Yadav, Structural, dielectric, magnetic, magnetodielectric and impedance spectroscopic studies of multiferroic BiFeO3–BaTiO3 ceramics. Mater. Sci. Eng. B 176, 540–547 (2011)CrossRefGoogle Scholar
  45. 45.
    R. Choudhary, D.K. Pradhan, C. Tirado, G. Bonilla, R. Katiyar, Impedance characteristics of Pb(Fe2/3W1/3)O3–BiFeO3 composites. Phys. Status Solidi (b) 244, 2254–2266 (2007)CrossRefADSGoogle Scholar
  46. 46.
    M.A. Rafiq, M. Rasheed, Q.K. Muhammad, M. Waqar, M. Zubair, Structural and high temperature conduction studies of (Na0.46Bi0.46Ba0.08)(MnxTi1– xO3)–CuO lead-free piezoelectric ceramics. J. Mater. Sci.: Mater. Electron. 28, 15009–15020 (2017)Google Scholar
  47. 47.
    A. Srivastava, A. Garg, F.D. Morrison, Impedance spectroscopy studies on polycrystalline BiFeO3 thin films on Pt/Si substrates. J. Appl. Phys. 105, 054103 (2009)CrossRefADSGoogle Scholar
  48. 48.
    K. Parida, S.K. Dehury, R. Choudhary, Electrical, optical and magneto-electric characteristics of BiBaFeCeO6 electronic system. Mater. Sci. Eng. B 225, 173–181 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Muhammad Asif Rafiq
    • 1
    Email author
  • Qaisar Khushi Muhammad
    • 1
    • 3
  • Sameel Nasir
    • 1
  • Usama Amin
    • 1
  • Adnan Maqbool
    • 1
  • Zubair Ahmad
    • 2
  1. 1.Department of Metallurgical and Materials EngineeringUniversity of Engineering and Technology (UET)LahorePakistan
  2. 2.Ibn-e-Sina Institute of TechnologyIslamabadPakistan
  3. 3.Pakistan Institute of Technology for Minerals and Advanced Engineering Materials (PITMAEM), Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories ComplexLahorePakistan

Personalised recommendations