Advertisement

Applied Physics A

, 124:787 | Cite as

Direct conjugation of silicon nanoparticles with M13pVIII-engineered proteins to bacteria identification

  • Laura M. De Plano
  • Santi Scibilia
  • Maria Giovanna Rizzo
  • Domenico Franco
  • Angela M. MezzasalmaEmail author
  • Salvatore P. P. GuglielminoEmail author
Article
  • 61 Downloads

Abstract

Pseudomonas aeruginosa and Staphylococcus aureus are two opportunistic human pathogens among the most common agents of nosocomial infections. The early detection plays an important role in health care, and pharmacological and biomedical sectors. The use of functional nanoparticles is promising candidate to create new materials and devices to improve diagnosis, prevention, and treatment of diseases in different fields of applications. In this work, we used phage-specific pVIII proteins, isolated from P9b and St.au9IVS5 phage clones, displaying exogenous peptide (QRKLAAKLT and RVRSAPSSS) to detect P. aeruginosa and S. aureus, respectively. These selective bioprobes were used in “one-step” functionalization of silicon nanoparticles (SiNPs) by pulsed laser ablation of silicon in an aqueous solution, containing phage-specific pVIII protein. The optical properties of the bioconjugates (pVIII–SiNPs) are examined by photoluminescence and UV–Vis spectroscopy. Furthermore, size distribution and ability of bioconjugates to bind its bacterial target has been investigated by scanning electron microscopy, scanning transmission electron microscopy, and epi-fluorescence microscope. Our results show that the bioconjugates are able to bind P. aeruginosa and S. aureus, respectively, within 30 min. Furthermore, the yellow–green photo-emissive properties, detected by epi-fluorescence microscopy, demonstrate their potential use as fluorescent probes silicon-based for in vitro applications.

Graphical abstract

Abbreviations

SiNPs

Silicon nanoparticles

P9b pVIII–SiNPs

Bioconjugate of SiNPs (silicon nanoparticles) with pVIII-engineered protein isolated from P9b phage clone.

St.au9IVS5 pVIII–SiNPs

Bioconjugate of SiNPs (silicon nanoparticles) with pVIII-engineered protein isolated from St.au9IVS5 phage clone.

Notes

Acknowledgements

The authors thank Dr. F. Barreca and Prof. F. Neri for help measurements with scanning electron microscopy operating in transmission mode (STEM).

Author contributions

LP, MGR, and DF performed isolation of specific pVIII protein from P9b and St.au9IVS5 phage clones; one-step synthesis of pVIII–SiNPs bioconjugates; binding of P. aeruginosa and S. aureus to pVIII–SiNPs complexes. S.S. and A.M.M. analyzed the pVIII–SiNPs bioconjugates samples after and post-binding of P. aeruginosa. LP, MGR, DF, SS, AMM, and SG discussed and analyzed data, and wrote the manuscript. All authors read and approved the manuscript.

Compliance with ethical standards

Conflict of interest

The authors report no conflicts of interest in this work.

References

  1. 1.
    H. Nishimura, K. Ritchie, R.S. Kasai, M. Goto, N. Morone, H. Sugimura, K. Tanaka, I. Sase, A. Yoshimura, Y. Nakano, T.K. Fujiwara, A. Kusumi, Biocompatible fluorescent silicon nanocrystals for single-molecule tracking and fluorescence imaging. J. Cell Biol. 202, 967 (2013)CrossRefGoogle Scholar
  2. 2.
    K. Huang, H. Ma, J. Liu, S. Huo, A. Kumar, T. Wei, X. Zhang, S. Jin, Y. Gan, P.C. Wang, S. He, X. Zhang, X.-J. Liang, Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo. ACS Nano 6, 4483 (2012)CrossRefGoogle Scholar
  3. 3.
    L.T. Canham, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57, 1046–1048 (1990).  https://doi.org/10.1063/1.103561 ADSCrossRefGoogle Scholar
  4. 4.
    V. Vinciguerra, G. Franzò, F. Priolo, F. Iacona, C. Spinella, Quantum confinement and recombination dynamics in silicon nanocrystals embedded in SiO/SiO2 superlattices. J. Appl. Phys. 87, 8165–8173 (2000).  https://doi.org/10.1063/1.373513 ADSCrossRefGoogle Scholar
  5. 5.
    G. Wang, S.-T. Yau, K. Mantey, M.H. Nayfeh, Fluorescent Si nanoparticle-based electrode for sensing biomedical substances. Opt. Commun. 281, 1765–1770 (2008).  https://doi.org/10.1016/j.optcom.2007.07.070 ADSCrossRefGoogle Scholar
  6. 6.
    R. Intartaglia, K. Bagga, F. Brandi, G. Das, A. Genovese, E. Di Fabrizio, A. Diaspro, Optical properties of femtosecond laser-synthesized silicon nanoparticles in deionized water. J. Phys. Chem. C 115, 5102–5107 (2011).  https://doi.org/10.1021/jp109351t CrossRefGoogle Scholar
  7. 7.
    J. Dougan, C. Karlsson, W. Smith, D. Graham, Enhanced oligonucleotide–nanoparticle conjugate stability using thioctic acid modified oligonucleotides. Nucl. Acids Res. 35, 3668–3675 (2007).  https://doi.org/10.1093/nar/gkm237 CrossRefGoogle Scholar
  8. 8.
    F.Y. Kuo, W.-L. Lin, Y.-C. Chen, Affinity capture using peptide-functionalized magnetic nanoparticles to target Staphylococcus aureus. Nanoscale 8, 9217–9225 (2016).  https://doi.org/10.1039/c6nr00368k ADSCrossRefGoogle Scholar
  9. 9.
    P. Liu, L. Han, F. Wang, V.A. Petrenko, A. Liu, Gold nanoprobe functionalized with specific fusion protein selection from phage display and its application in rapid, selective and sensitive colorimetric biosensing of Staphylococcus aureus. Biosensors Bioelectron. 82, 195–203 (2016).  https://doi.org/10.1016/j.bios.2016.03.075 CrossRefGoogle Scholar
  10. 10.
    M. Karlsson, U. Carlsson, Protein adsorption orientation in the light of fluorescent probes: mapping of the interaction between site-directly labeled human carbonic anhydrase II and silica nanoparticles. Biophys. J. 88, 3536–3544 (2005).  https://doi.org/10.1529/biophysj.104.054809 ADSCrossRefGoogle Scholar
  11. 11.
    K. Bagga, A. Barchanski, R. Intartaglia, S. Dante, R. Marotta, A. Diaspro, C.L. Sajti, F. Brandi, Laser-assisted synthesis of Staphylococcus aureus protein-capped silicon quantum dots as bio-functional nanoprobes. Laser Phys. Lett. 10, 065603 (2013).  https://doi.org/10.1088/1612-2011/10/6/065603 ADSCrossRefGoogle Scholar
  12. 12.
    G.T. Hermanson, Bioconjugate Techniques, 2nd edn. (Elsevier, Amsterdam, 2008). ISBN: 978-0-12-370501-3Google Scholar
  13. 13.
    A. Hlaváček, A. Sedlmeier, P. Skládal, H.H. Gorris, Electrophoretic characterization and purification of silica-coated photon-upconverting nanoparticles and their bioconjugates. ACS Appl. Mater. Interfaces 6, 6930–6935 (2014).  https://doi.org/10.1021/am500732y CrossRefGoogle Scholar
  14. 14.
    R.P. Bagwe, L.R. Hilliard, W. Tan, Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir 22, 4357–4362 (2006).  https://doi.org/10.1021/la052797j CrossRefGoogle Scholar
  15. 15.
    A. Fojtik, A. Henglein, B. Bunsen-Ges, Formation of nanometer-size silicon particles in a laser induced plasma in SiH4. Ber Bunsenges. Phys. Chem. 97, 1493–1496 (1993).  https://doi.org/10.1002/bbpc.19930971112 CrossRefGoogle Scholar
  16. 16.
    J. Neddersen, G. Chumanov, T.M. Cotton, Laser ablation of metals: a new method for preparing SERS active colloids, Appl. Spectrosc. 47, 1959 (1993)ADSCrossRefGoogle Scholar
  17. 17.
    H. Zeng, X. Du, S.C. Singh, S.A. Kulinich, S. Yang, J. He, W. Cai, Nanomaterials via laser ablation/irradiation in liquid: a review. Adv. Funct. Mater. 22, 1333–1353 (2012)CrossRefGoogle Scholar
  18. 18.
    K. Xu, C. Zhang, R. Zhou, R. Ji, M. Hong, Hybrid micro/nano-structure formation by angular laser texturing of Si surface for surface enhanced Raman scattering. Opt. Express 24, 10352–10358 (2016).  https://doi.org/10.1364/OE.24.010352 ADSCrossRefGoogle Scholar
  19. 19.
    K. Xu, H. Yan, C.F. Tan, Y. Lu, Y. Li, G.W. Ho, R. Ji, M. Hong, Hedgehog inspired CuO nanowires/Cu2O composites for broadband visible-light-driven recyclable surface enhanced Raman scattering. Adv. Opt. Mater. 6, 1701167 (2018)CrossRefGoogle Scholar
  20. 20.
    C. Pfeiffer, C. Rehbock, D. Hu¨hn, C. Carrillo-Carrion, D. Jimenez de Aberasturi, V. Merk, S. Barcikowski, W.J. Parak, Interaction of colloidal nanoparticles with their local environment: the (ionic) nanoenvironment around nanoparticles is different from bulk and determines the physico-chemical properties of the nanoparticles. J. R. Soc. Interface 11, 20130931 (2014)CrossRefGoogle Scholar
  21. 21.
    S. Petersen, S. Barcikowski, In situ bioconjugation: single step approach to tailored nanoparticle-bioconjugates by ultrashort pulsed laser ablation. Adv. Funct. Mater. 19, 1167–1172 (2009).  https://doi.org/10.1002/adfm.200801526 CrossRefGoogle Scholar
  22. 22.
    V.A. Petrenko, V.J. Vodyanoy, Phage display for detection of biological threat agents. J. Microbiol. Methods 53, 253–262 (2003).  https://doi.org/10.1016/S0167-7012(03)00029-0 CrossRefGoogle Scholar
  23. 23.
    V.A. Petrenko, G.P. Smith, X. Gong, T. Quinn, A library of organic landscapes on filamentous phage. Protein Eng. 9, 797–801 (1996)CrossRefGoogle Scholar
  24. 24.
    C.F. Barbas, D.R. Burton, J.K. Scott, G.J. Silverman, Phage Display, A Laboratory Manual (Cold Spring Harbor Lab. Press, Woodbury, 2001)Google Scholar
  25. 25.
    J.C. Butler, T. Angelini, J.X. Tang, G.C.L. Wong, Ion multivalence and like-charge polyelectrolyte attraction. Phys. Rev. Lett. 91, 028301 (2003).  https://doi.org/10.1103/PhysRevLett.91.028301 ADSCrossRefGoogle Scholar
  26. 26.
    S. Scibilia, G. Lentini, E. Fazio, D. Franco, F. Neri, A.M. Mezzasalma, S.P.P. Guglielmino, Self-assembly of silver nanoparticles and bacteriophage. Sens. Bio-Sens. Res. 7, 146–152 (2016).  https://doi.org/10.1016/j.sbsr.2016.02.002 CrossRefGoogle Scholar
  27. 27.
    L.M. De Plano, S. Scibilia, M.G. Rizzo, S. Crea, D. Franco, A.M. Mezzasalma, S.P.P. Guglielmino, One-step production of phage–silicon nanoparticles by PLAL as fluorescent nanoprobes for cell identification. Appl. Phys. A 124, 222 (2018)ADSCrossRefGoogle Scholar
  28. 28.
    S. Carnazza, C. Foti, G. Gioffrè, F. Felici, S.P.P. Guglielmino, Specific and selective probes for Pseudomonas aeruginosa from phage-displayed random peptide libraries. Biosens. Bioelectron. 23, 1137–1144 (2008).  https://doi.org/10.1016/j.bios.2007.11.001 CrossRefGoogle Scholar
  29. 29.
    L.M. De Plano, S. Carnazza, G.M.L. Messina, M.G. Rizzo, G. Marletta, S.P.P. Guglielmino, Specific and selective probes for Staphylococcus aureus from phage-displayed random peptide libraries. Colloids Surf. B 157, 473–480 (2017)CrossRefGoogle Scholar
  30. 30.
    P.K. Jayanna, D. Bedi, J.W. Gillespie, P. DeInnocentes, T. Wang, V.P. Torchilin, R.C. Bird, V.A. Petrenko, Landscape phage fusion protein-mediated targeting of nanomedicines enhances their prostate tumor cell association and cytotoxic efficiency. Nanomed. Nanotechnol. Biol. Med. 6, 538–546 (2010).  https://doi.org/10.1016/j.nano.2010.01.005 CrossRefGoogle Scholar
  31. 31.
    E. Fazio, A. Cacciola, A.M. Mezzasalma, G. Mondio, F. Neri, R. Saija, Modelling of the optical absorption spectra of PLAL prepared ZnO colloids. J. Quant. Spectrosc. Radiat. Trans. 124, 86–93 (2013).  https://doi.org/10.1016/j.jqsrt.2013.02.028 ADSCrossRefGoogle Scholar
  32. 32.
    S.A. Berkowitz, L.A. Day, Mass, length, composition and structure of the filamentous bacterial virus fd. J. Mol. Biol. 102, 531–547 (1976).  https://doi.org/10.1016/0022-2836(76)90332-6 CrossRefGoogle Scholar
  33. 33.
    V.A. Petrenko, G.P. Smith, M.M. Mazooji, T. Quinn, Alpha-helically constrained phage display library. Protein Eng. Design Select. 15, 943–950 (2002).  https://doi.org/10.1093/protein/15.11.943 CrossRefGoogle Scholar
  34. 34.
    R.B. Spruijt, C.J.A.M. Wolfs, M.A. Hemminga, Aggregation-related conformational change of the membrane-associated coat protein of bacteriophage M13. Biochemistry 28, 9158–9165 (1989).  https://doi.org/10.1021/bi00449a030 CrossRefGoogle Scholar
  35. 35.
    C.M. Deber, A.R. Khan, Z. Li, C. Joensson, M. Glibowicka, J. Wang, Val-Ala mutations selectively alter helix-helix packing in the transmembrane segment of phage M13 coat protein. Proc Natl Acad Sci USA 90(24), 11648–11652 (1993)ADSCrossRefGoogle Scholar
  36. 36.
    X. Jiang, S. Weise, M. Hafner, C. Rocker, F. Zhang, W.J. Parak, G.U. Nienhaus, Quantitative analysis of the protein corona on FePt nanoparticles formed by transferrin binding. J. R. Soc. Interface 7, S5–S13 (2010)CrossRefGoogle Scholar
  37. 37.
    C. Rehbock, V. Merk, L. Gamrad, R. Streubel, S. Barcikowski, Size control of laser-fabricated surfactant-free gold nanoparticles with highly diluted electrolytes and their subsequent bioconjugation. Phys. Chem. Chem. Phys. 15, 3057–3067 (2013).  https://doi.org/10.1039/c2cp42641b CrossRefGoogle Scholar
  38. 38.
    A.A. Shemetov, I. Nabiev, A. Sukhanova, Molecular interaction of proteins and peptides with nanoparticles. ACNS Nano 6, 4585–4602 (2012)Google Scholar
  39. 39.
    T.G. Ulusoy Ghobadi, A. Ghobadi, T. Okyay, K. Topalli, A.K. Okyay, Controlling luminescent silicon nanoparticle emission produced by nanosecond pulsed laser ablation: role of interface defect states and crystallinity phase. RSC Adv. 6, 112520–112526 (2016)CrossRefGoogle Scholar
  40. 40.
    M. Coen, R. Lehmann, P. Groning, M. Bielmann, C. Galli, L. Schlapbach, Adsorption and bioactivity of protein A on silicon surfaces studied by AFM and XPS. J. Colloid Interface Sci. 233, 180–189 (2001).  https://doi.org/10.1006/jcis.2000.7240 ADSCrossRefGoogle Scholar
  41. 41.
    J.W. Gillespie, A.L. Gross, A.T. Puzyrev, D. Bedi, V.A. Petrenko, Combinatorial synthesis and screening of cancer cell-specific nanomedicines targeted via phage fusion proteins. Front Microbiol. 6, 16 (2015).  https://doi.org/10.3389/fmicb.2015.00628 CrossRefGoogle Scholar
  42. 42.
    F.X. Schmid, in Encyclopedia Life Sciences, Introductory Articles, R. Bridgewater (ed.) (Wiley, 2001), pp. 1–4.  https://doi.org/10.1038/npg.els.0003142
  43. 43.
    S.A. Overman, P. Bondr, N.C. Maiti, G.J. Thomas Jr., Structural characterization of the filamentous bacteriophage PH75 from Thermus thermophilus by Raman and UV-resonance Raman spectroscopy. Biochemistry 44, 3091–3100 (2005)CrossRefGoogle Scholar
  44. 44.
    G. Syed Hamad, R. Krishna Podagatlapalli, S.V.S. Mounika, A.P. Nageswara Rao, A.P. Pathak, S. Venugopal Rao, Studies on linear, nonlinear optical and excited state dynamics of silicon nanoparticles prepared by picosecond laser ablation. AIP Adv. 5, 127127 (2015)ADSCrossRefGoogle Scholar
  45. 45.
    S. Yang, W. Li, B. Cao, H. Zeng, W. Cai, Size and structure control of Si nanoparticles by laser ablation in different liquid media and further centrifugation classification. J. Phys. Chem. C 115, 21056–21062 (2011)CrossRefGoogle Scholar
  46. 46.
    R. Intartaglia, K. Bagga, A. Genovese, A. Athanassiou, R. Cingolani, A. Diaspro, F. Brandi, Influence of organic solvent on optical and structural properties of ultra-small silicon dots synthesized by UV laser ablation in liquid. Phys. Chem. Chem. Phys. 14, 15406 (2012)CrossRefGoogle Scholar
  47. 47.
    S. Hamad, G.K. Podagatlapalli, V.S. Vendamani, S.V.S. Nageswara Rao, A.P. Pathak, S.P. Tewari, S. Venugopal Rao, Femtosecond ablation of silicon in acetone: tunable photoluminescence from generated nanoparticles and fabrication of surface nanostructures. J. Phys. Chem. C 118, 7139–7151 (2014).  https://doi.org/10.1021/jp501152x CrossRefGoogle Scholar
  48. 48.
    K. Wang, X. He, X. Yang, H. Shi, Functionalized silica nanoparticles: a platform for fluorescence imaging at the cell and small animal levels. Acc. Chem. Res. 46, 1367–1376 (2013).  https://doi.org/10.1021/ar3001525 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Laura M. De Plano
    • 1
  • Santi Scibilia
    • 2
  • Maria Giovanna Rizzo
    • 1
  • Domenico Franco
    • 1
  • Angela M. Mezzasalma
    • 2
    Email author
  • Salvatore P. P. Guglielmino
    • 1
    Email author
  1. 1.Department of Chemical Sciences, Biological, Pharmaceutical and EnvironmentalUniversity of MessinaMessinaItaly
  2. 2.Department of Mathematics, Informatics, Physics and Earth SciencesUniversity of MessinaMessinaItaly

Personalised recommendations